Bio-inspired catalyst to lower cost of producing hydrogen

February 1, 2013

Bio-inspired iron-based catalyst for producing hydrogen. Key atoms and groups are indicated. The color convention throughout is Fe atoms, brown; S atoms, yellow; P atoms, violet; C atoms, gray; N atoms, blue; O atoms, red; and H atoms, white. (Credit: Patrick H.-L. Sit et al./PNAS)

Hydro­gen has tremen­dous poten­tial as an eco-friendly fuel, but it is expen­sive to pro­duce. Now researchers at Prince­ton Uni­ver­sity and Rut­gers Uni­ver­sity have moved a step closer to har­ness­ing nature to pro­duce hydro­gen.

The team, led by Prince­ton chem­istry pro­fes­sor Annabella Sel­l­oni, takes inspi­ra­tion from bac­te­ria that make hydro­gen from water, using enzymes called di-iron hydro­ge­nases.

Cheap components = cost-effective

They used com­puter mod­els to fig­ure out how to incor­po­rate the magic of these enzymes into the design of prac­ti­cal syn­thetic cat­a­lysts that humans can use to pro­duce hydro­gen from water.

The cat­a­lysts designed so far are sus­cep­ti­ble to poi­son­ing by the oxy­gen present dur­ing the reac­tion.

By mak­ing changes to the cat­a­lyst to improve the sta­bil­ity of the struc­ture in water, the researchers found that they had also cre­ated a cat­a­lyst that is tol­er­ant to oxy­gen with­out sac­ri­fic­ing effi­ciency.

The arti­fi­cial cat­a­lyst could also be made from abun­dant and cheap com­po­nents, such as iron, indi­cat­ing that the cat­a­lyst could be a cost-effective way of pro­duc­ing hydrogen.

The team con­ducted their research in sil­ico — that is, using com­puter mod­el­ing. The goal is to learn enough about how these cat­a­lysts work to some­day cre­ate work­ing cat­a­lysts that can make vast quan­ti­ties of inex­pen­sive hydro­gen for use in vehi­cles and elec­tric­ity production.