Brain-in-a-dish flies simulated plane

October 25, 2004 | Source: KurzweilAI

A University of Florida scientist has grown a living “brain” that can fly a simulated plane, giving scientists a novel way to observe how brain cells function as a network.

The “brain” — a collection of 25,000 living neurons taken from a rat’s brain and cultured inside a glass dish — gives scientists a unique real-time window into the brain at the cellular level.

By watching the brain cells interact, scientists hope to understand what causes neural disorders such as epilepsy and to determine noninvasive ways to intervene. As living computers, they may someday be used to fly small unmanned airplanes or handle tasks that are dangerous for humans, such as search-and-rescue missions or bomb damage assessments.

The experimental “brain” interacts with an F-22 fighter jet flight simulator through a specially designed plate called a multi-electrode array and a common desktop computer.

“It’s essentially a dish with 60 electrodes arranged in a grid at the bottom,” said Thomas DeMarse, UF professor of biomedical engineering. “Over that we put the living cortical neurons from rats, which rapidly begin to reconnect themselves, forming a living neural network — a brain.”

The brain and the simulator establish a two-way connection, similar to how neurons receive and interpret signals from each other to control our bodies. By observing how the nerve cells interact with the simulator, scientists can decode how a neural network establishes connections and begins to compute, DeMarse said.

DeMarse has a $500,000 National Science Foundation grant to create a mathematical model that reproduces how the neurons compute.

University of Florida news release