Latest research supports possibility of cyropreservation

June 21, 2006 | Source: KurzweilAI

The latest research on water supports the possibility that cells, tissues and even the entire human body could be cyropreserved without formation of damaging ice crystals, according to University of Helsinki researcher Anatoli Bogdan in a paper scheduled for the July 6 issue of the ACS Journal of Physical Chemistry.

Bogdan’s experiments involved a form of water termed “glassy water,” or low-density amorphous ice (LDA), which is produced by slowly supercooling diluted aqueous droplets. LDA melts into highly viscous water (HVW). Bogdan reports that HVW is not a new form of water, as some scientists believed.

“It may seem fantastic, but the fact that in aqueous solution, [the] water component can be slowly supercooled to the glassy state and warmed back without the crystallization implies that, in principle, if the suitable cyroprotectant is created, cells in plants and living matter could withstand a large supercooling and survive,” Bogdan explained. In present cyropreservation, the cells being preserved are often damaged due to freezing of water either on cooling or subsequent warming to room temperature.

“Damage of the cells occurs due to the extra-cellular and intra-cellular ice formation which leads to dehydration and separation into the ice and concentrated unfrozen solution. If we could, by slow cooling/warming, supercool and then warm the cells without the crystallization of water then the cells would be undamaged.”

Source: American Chemical Society news release