Liquid lenses may shrink feature sizes on microchips

July 29, 2003 | Source: KurzweilAI

New data will assist in the design of optics for liquid immersion lithography, an old idea that recently has attracted new interest as a way to improve image resolution and thus shrink feature sizes of computer chips.

Conventional optical lithography has advanced sufficiently to achieve a resolution of 100 nanometers (billionths of a meter), but there are physical and technical limits to how much better it can get. By placing certain liquids between the final optical element and the silicon wafer, it may be possible to extend the resolution to 65 nanometers for state-of-the-art lithography using the 193-nanometer wavelength of light, or even 45 nanometers or below for future systems using the 157-nanometer wavelength.

A key characteristic of liquids to be used in immersion lithography is their refractive index, which affects how light bends as it crosses an interface, such as that between the liquid and a lens or a silicon wafer. Air has an index close to one. By contrast, water has a refractive index almost 50 percent higher. Placing this higher-index fluid between the lens and the silicon wafer reduces the resolution-limiting effects of diffraction, enabling imaging of smaller feature sizes.

National Institute of Standards and Technology press release