Recently Added Most commented

Living implants

September 29, 2015

Development of a CB[8]-addressable bacterial strain (credit: Shrikrishnan Sankaran et al./ACS Nano)

A method for merging bacteria in human cells as “living implants” has been developed by University of Twente researchers. The implants could include stents equipped with bacteria on which endothelial cells (cells that form the lining of blood vessels) can grow, or bacteria that can release medicines in specific parts of the body.

They achieved this by supramolecular assembly, modifying the DNA of E. coli bacteria in such a… read more

A biomimetic dental prosthesis

September 29, 2015

Cross section of the artificial tooth under an electron microscope (false colour): Ceramic platelets in the enamel are orientated vertically. In the dentin, they are aligned horizontally. (credit: Hortense Le Ferrand/ETH Zürich)

A new procedure that can mimic the complex fine structure of biological composite materials, such as teeth or seashells, has been developed by ETH Zurich researchers. It could allow for creating synthetic materials that are as hard and tough as their natural counterparts.

The secret of these hard natural biomaterials is in their unique fine structure: they are composed of different layers in which numerous micro-platelets are… read more

Self-assembling material could lead to artificial arteries

September 29, 2015

Illustration showing a capillary created from biomaterials (credit: QMUL)

Researchers at Queen Mary University of London (QMUL) have developed a new bioinspired process using self-assembling organic molecules that can develop into complex tubular tissue-like structures. The process could lead to creating synthetic tissues that emulate veins, arteries, or even the blood-brain barrier, and that exhibit dynamic behaviors found in biological tissues like growth, morphogenesis, and healing.

The process uses solutions of peptide and protein… read more

First optical ‘rectenna’ converts light to DC current

As an array of billions of carbon nanotubes, they could efficiently capture solar energy
September 28, 2015

optical rectenna ft

Using nanometer-scale components, Georgia Institute of Technology researchers have demonstrated the first optical rectenna, a device that combines the functions of an antenna and a rectifier diode to convert light directly into DC current.

Based on multiwall carbon nanotubes and tiny rectifiers fabricated onto them, the optical rectennas could provide a new technology for energy harvesters, including photodetectors that would operate without the need for… read more

Ultrafast lasers enable 3-D micropatterning of biocompatible hydrogels

Allows for high-resolution and scalability for engineering tissue scaffolds and implants
September 28, 2015

Illustration of laser-based micropatterning of silk hydrogels. The transparent gels enable the laser's photons to be absorbed more than 10 times deeper than with other materials, without damaging the cells surrounding the "Tufts" pattern. (credit: M.B. A)

Tufts University biomedical engineers have developed low-energy, ultrafast laser technology for micropatterning high-resolution, 3-D structures in silk-protein hydrogels.

Micropatterning is used to bring oxygen and nutrients to rapidly proliferating cells in an engineered tissue scaffold. The goal is “to controllably guide cell growth and create an artificial vasculature (blood vessel system) within an already densely seeded silk hydrogel,” said Fiorenzo G. Omenetto, Ph.D., senior author… read more

How to make 3-D objects totally disappear

A fully wraparound, ultrathin invisibility cloak at the microscale
September 28, 2015

This image shows a 3-D illustration of a metasurface skin cloak made from an ultrathin layer of nanoantennas (gold blocks) covering an arbitrarily shaped object. Light reflects off the cloak (red arrows) as if it were reflecting off a flat mirror. (credit: Image courtesy of Xiang Zhang group, Berkeley Lab/UC Berkeley)

An ultra-thin invisibility “skin” cloak that can conform to the shape of an object and conceal it from detection with visible light has been developed by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley.

Working with blocks of gold nanoantennas, the Berkeley researchers created a “skin cloak” just 80 nanometers in thickness that was wrapped around… read more

Liquid water flows on today’s Mars, NASA confirms

September 28, 2015

These dark, narrow, 100 meter-long streaks called recurring slope lineae flowing downhill on Mars are inferred to have been formed by contemporary flowing water. Recently, planetary scientists detected hydrated salts on these slopes at Hale crater, corroborating their original hypothesis that the streaks are indeed formed by liquid water. The blue color seen upslope of the dark streaks are thought not to be related to their formation, but instead are from the presence of the mineral pyroxene. The image is produced by draping an orthorectified (Infrared-Red-Blue/Green(IRB)) false color image (ESP_030570_1440) on a Digital Terrain Model (DTM) of the same site produced by High Resolution Imaging Science Experiment (University of Arizona). Vertical exaggeration is 1.5. (credit: NASA/JPL/University of Arizona)

New findings from NASA’s Mars Reconnaissance Orbiter (MRO) provide the strongest evidence yet that liquid water flows intermittently on present-day Mars, NASA announced today.

Researchers detected darkish signatures of hydrated minerals on slopes in several locations that appear to ebb and flow over time, based on spectrometer data. The signatures darken and appear to flow down steep slopes during warm seasons, and then fade in cooler seasons.

“This… read more

These self-propelled microscopic carbon-capturing motors may reduce carbon-dioxide levels in oceans

September 25, 2015

Nanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate. (credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering)

Nanoengineers at the University of California, San Diego have designed enzyme-functionalized micromotors the size of red blood cells that rapidly zoom around in water, remove carbon dioxide, and convert it into a usable solid form.

The proof-of-concept study represents a promising route to mitigate the buildup of carbon dioxide, a major greenhouse gas in the environment, said the researchers.

The team, led by distinguished nanoengineering professor… read more

DNA-based nanodevices for molecular medicine: an overview

September 25, 2015

Virus-protein-coated DNA origami nanostructures. With the help of protein encapsulation, DNA origamis can be transported into human cells much more efficiently. (credit: Veikko Linko and Mauri Kostiainen)

KurzweilAI has covered a wide variety of research projects that explore how DNA molecules can be assembled into complex nanostructures for molecular-scale diagnostics, smart drug-delivery, and other uses. For example, tailored DNA structures could find targeted cancer cells and release their molecular payload (drugs or antibodies) selectively.

An article written by researchers from Aalto University just published in Trends in Biotechnology journal, comparing biological DNA-nanomachine developments… read more

Brain-computer interface enables paralyzed man to walk without robotic support

September 25, 2015

A man whose legs had been paralyzed for five years walks along a 12-foot course using UCI-developed technology that lets the brain bypass the spinal cord to send messages to the legs. (credit: courtesy of UCI’s Brain Computer Interface Lab)

A novel brain-computer-interface (BCI) technology created by University of California, Irvine researchers has allowed a paraplegic man to walk for a short distance, unaided by an exoskeleton or other types of robotic support.

The male participant, whose legs had been paralyzed for five years, walked along a 12-foot course using an electroencephalogram (EEG) brain-computer-interface system that lets the brain bypass the spinal cord to send messages to… read more

Pushing the resolution and exposure-time limits of lensless imaging

A custom-built ultrafast laser that could image everything from semiconductor chips to cells in real time
September 25, 2015

ultrafast laser ft

Physicists at Friedrich Schiller University in Germany are pushing the boundaries of nanoscale imaging by shooting ultra-high-resolution, real-time images in extreme ultraviolet light — without lenses. The new method could be used to study everything from semiconductor chips to cancer cells, the scientists say.

They are improving a lensless imaging technique called “coherent diffraction imaging,” which has been around since the 1980s. To take a picture… read more

New ‘stealth dark matter’ theory may explain mystery of the universe’s missing mass

A balancing act performed before the universe cooled
September 24, 2015

This 3D map illustrates the large-scale distribution of dark matter, reconstructed from measurements of weak gravitational lensing by using the Hubble Space Telescope (credit: Image courtesy of DOE/Lawrence Livermore National Laboratory)

A new theory that may explain why dark matter has evaded direct detection in Earth-based experiments has been developed by team of Lawrence Livermore National Laboratory (LLNL) particle physicists known as the Lattice Strong Dynamics Collaboration.

The group has combined theoretical and computational physics techniques and used the Laboratory’s massively parallel 2-petaflop Vulcan supercomputer to devise a new model of dark… read more

First brain-to-brain ‘telepathy’ communication via the Internet

September 24, 2015

University of Washington graduate student Jose Ceballos wears an electroencephalography (EEG) cap that records brain activity and sends a response to a second participant over the Internet (credit: University of Washington)

The first brain-to-brain telepathy-like communication between two participants via the Internet has been performed by University of Washington researchers.*

The experiment used a question-and-answer game. The goal is for the “inquirer” to determine which object the “respondent” is looking at from a list of possible objects. The inquirer sends a question (e.g., “Does it fly?) to the respondent, who answers “yes” or “no” by mentally focusing on one of… read more

A new class of anti-obesity compounds with potential anti-diabetic properties

Mice with pre-existing obesity lost 20 percent of their body weight and about 50 percent of their fat mass
September 24, 2015

Prevalence of Self-Reported Obesity Among U.S. Adults by State and Territory, BRFSS, 2014 (credit: Behavorial Risk Factor Surveillance System/CDC)

A molecule known as MnTBAP* has rapidly reversed obesity in mice and could be effective for humans in the future, according to researchers from Skidmore College and the Perelman School of Medicine at the University of Pennsylvania.

“In the span of a month, mice with pre-existing obesity lost 20 percent of their body weight and about 50 percent of their fat mass,” said… read more

A new distance record for quantum teleportation via photons

September 24, 2015

photon detector

Researchers at the National Institute of Standards and Technology (NIST) have “teleported” (transferred) quantum information carried in photons over 100 kilometers (km) of optical fiber — four times farther than the previous record.

The experiment confirmed that quantum communication is feasible over long distances in fiber, according to the researchers. Other research groups have teleported quantum information over longer distances in free space (wirelessly), but fiber-optic cables… read more

close and return to Home