Most Recently Added Most commentedBy Title | A-Z

Bioinspired coating for medical devices avoids clotting and suppresses bacterial infection

Repels blood and bacteria, including biofilms
October 15, 2014

This Scanning Electron Microscope (SEM) image shows how red blood cells coagulate to form a blood clot, which is a common and life-threatening risk associated with the use of implanted medical devices. (Credit: James Weaver, Harvard’s Wyss Institute)

A team of Harvard scientists and engineers has developed a new surface coating for medical devices that in tests repelled blood from more than 20 medically relevant substrates and also suppressed biofilm formation.

The study was reported in Nature Biotechnology.

Avoiding blood clotting and bacterial infcction

The problem they addressed was that any device implanted in the body (or in contact with flowing blood) could result in… read more

Microrobots armed with new force-sensing system to probe cells

October 14, 2014

This image shows a "microforce-sensing mobile microrobot" juxtaposed against a U.S. penny. The device is being developed at Purdue University  (Credit: Purdue University)

Purdue University researchers have designed and built a “vision-based micro force sensor end-effector” to measure forces on cells by being attached to microrobots, like a tiny nose.

A camera is used to measure the probe’s displacement while it pushes against cells, allowing for a simple calculation that reveals the force applied. Researchers already know the stiffness of the probe. When combined with displacement, a simple calculation reveals the force… read more

Nanoparticles that glow in color-coded light and can be magnetically manipulated

October 14, 2014

Elemental mapping of the location of iron atoms (blue) in the magnetic nanoparticles and cadmium (red) in the fluorescent quantum dots provide a clear visualization of the way the two kinds of particles naturally separate themselves into a core-and-shell structure. (Credit: MIT)

A team of researchers has achieved a long-sought goal of creating nanoparticles that can emit a colorful fluorescent glow in a biological environment and also be precisely manipulated into position within living cells.

The new technology, reported this week in the journal Nature Communications, could make it possible to track the position of the nanoparticles as they move within the body or inside a cell and also manipulate them precisely… read more

Alzheimer’s-in-a-dish is ‘first clear evidence’ for amyloid hypothesis

Promises to revolutionize drug discovery for neurodegenerative disorders
October 13, 2014

A confocal microscope image of an amyloid-beta deposit (orange) in 3D neural cell culture (credit: Se Hoon Choi et al/Nature)

Massachusetts General Hospital (MGH) researchers have created the first “Alzheimer’s-in-a-dish” — a 3D petri dish capable of reproducing the full course of events underlying the development of Alzheimer’s disease.

Alzheimer’s has been thought to result from the buildup of inflammatory plaque formed by the beta-amyloid protein and from another protein, tau, which entangles neurons.

The new research provides the first clear evidence supporting the hypothesis that deposition of… read more

Nanocasting custom-shaped metal nanoparticles in DNA molds

DNA-based programmable assembly to form precise 3D nanomaterials for disease detection, environmental testing, electronics, and beyond
October 13, 2014

nanocasting ft

Extending 3D printing of metals to the nanoscale, researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have developed a new method of forming 3D metal nanoparticles in prescribed shapes and dimensions using DNA as a construction mold.

The ability to mold inorganic nanoparticles out of materials such as gold and silver in precisely designed 3D shapes is a significant breakthrough that has the potential to… read more

Advances in ‘laser solid forming’ to produce 3D-printed metallic parts

October 13, 2014

Inconel 718 nickel-chromium alloy casing for an aircraft engine by hybrid manufacturing with LSF and casting (credit: Weidong Huang and Xin Lin/3D Printing and Additive Manufacturing)

Researchers Weidong Huang and Lin Xin from China’s Northwestern Polytechnical University describe their progress with 3D-printed metallic parts, using laser solid forming (LSF) technology, in an open-access (until Nov. 9) review article in 3D Printing and Additive Manufacturing, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

The authors review research advances toward the goal of developing LSF — an additive manufacturing technique that uses laser… read more

High-speed fluorescence for 1,000-times-faster LEDs

Future uses include telecommunication lasers and as single-photon sources for quantum cryptography
October 13, 2014

Plasmonics_Nanocube

Duke University researchers have made fluorescent molecules emit photons of light 1,000 times faster than with previous designs — a speed record, and a step toward realizing superfast light-emitting diodes (LEDs) for nanophotonic devices, such as telecommunication lasers and as single-photon sources for quantum cryptography.

The 2014 Nobel Prize in Physics was awarded for the discovery 20 years ago of how to make blue LEDs, leading… read more

The Nobel Prize in Chemistry 2014: beyond the diffraction limit in microscopy

October 10, 2014

The principle of single-molecule microscopy (credit: Johan Jarnestad /The Royal Swedish Academy of Sciences)

The Royal Swedish Academy of Sciences has awarded the Nobel Prize in Chemistry for 2014 to three scientists for the development of super-resolved fluorescence microscopy: Eric Betzig, Janelia Research Campus, Howard Hughes Medical Institute; Stefan W. Hell, Max Planck Institute for Biophysical Chemistry and German Cancer Research Center, Heidelberg;  and William E. Moerner, Stanford University.

The Prize amount: SEK 8 million (US$1.1 million or… read more

Heated nanoparticles trigger immune systems deactivated by cancer

October 10, 2014

np therapies ft

Researchers at Dartmouth-Hitchcock Norris Cotton Cancer Center have developed a method to use heat with nanoparticles to wake up the immune system so it recognizes and attacks invading cancer cells, according to Steve Fiering, PhD, Norris Cotton Cancer Center researcher and professor of Microbiology and Immunology, and of Genetics at the Geisel School ofread more

High-speed drug screening

October 9, 2014

This schematic drawing shows a new system that can rapidly and automatically inject zebrafish with drugs and then image them to see the drug effects. (Credit: MIT)

MIT engineers have devised a way to rapidly test hundreds of different drug-delivery vehicles in living animals, making it easier to discover promising new ways to deliver a class of drugs called biologics, which includes antibodies, peptides, RNA, and DNA, to human patients.

In a study appearing in the journal Integrative Biology, the researchers used this technology to identify materials that can efficiently deliver RNA to zebrafish and also to… read more

Animated 3D movies show cells in action over time

October 9, 2014

A screen from LEVER 3-D, software that can produce a 3D rendering of microscope images of cells and animate it through time to show their multiplication and movement (credit: Drexel University)

Drexel University researchers have developed software and hardware that will enable biologists to use 3D glasses in a home-theater-like lab to better track and study the movement and multiplication of cells.

Their goal is to enhance the current visual data that these scientists are working with so that it’s easier to identify changes in cells over time — information that is key to studying the abnormal cell proliferation that… read more

New ‘lab-on-a-chip’ could revolutionize early diagnosis of cancer

October 8, 2014

(Credit: University of Kansas Medical Center)

A new miniaturized biomedical “lab-on-a-chip” testing device for exosomes — molecular messengers between cells — promises faster, earlier, less-invasive diagnosis of cancer, according to its developers at the University of Kansas Medical Center and the University of Kansas Cancer Center.

“A lab-on-a-chip shrinks the pipettes, test tubes and analysis instruments of a modern chemistry lab onto a microchip-sized wafer,” explained Yong Zeng, assistant… read more

Quantum robots will be more creative, faster, smarter, say researchers

October 8, 2014

The theoretical work has focused on using quantum computing to accelerate the machine learning. (Credit: SINC)

Quantum computing should be applied to robots, automatons, and other agents that use AI to make them more creative and to learn and respond faster than conventional robots, researchers from the Complutense University of Madrid (UCM) and the University of Innsbruck (Austria) recommend.

In a study in the journal ‘Physical Review X’ modeling the use of quantum physics in future robots (and other agents), they demonstrate that… read more

‘Smart’ bandage glows to measure oxygenation

October 8, 2014

The transparent liquid bandage displays a quantitative, oxygenation-sensitive colormap that can be easily acquired using a simple camera or smartphone (Credit: Li/Wellman Center for Photomedicine)

Inspired by a desire to help wounded soldiers, a team of researchers has created a paint-on, see-through, “smart” bandage that glows to indicate a wound’s tissue oxygenation concentration.

Oxygen plays a critical role in healing, so mapping these levels in severe wounds and burns can help to significantly improve the success of surgeries to restore limbs and physical functions.

The development was led by Assistant Professor Conor L.… read more

The signature of aging in the brain

Cognitive decline may be related to one's "immunological age"
October 7, 2014

Immunofluorescence microscope image of the choroid plexus. Epithelial cells are in green and chemokine proteins (CXCL10) are in red (credit: Weizmann Institute of Science)

Weizmann Institute of Science researchers have found evidence of a unique “signature” that may be the “missing link” between cognitive decline and aging and that may in the future lead to treatments that can slow or reverse cognitive decline in older people, according to Prof. Michal Schwartz of the Department of Neurobiology and Ido Amit of the Department of Immunology.

Until a decade ago, scientific dogma held that the blood-brain… read more

close and return to Home