science + technology news

Page 2 of 1,22012345678910last

Mapping connections of single neurons using a holographic light beam

New technique triggers individual neurons for mapping precise connections in real time
November 13, 2017

The researchers used an opsin protein called CoChR, which generates a very strong electric current in response to light, and fused it to a small protein that directs the opsin into the cell bodies of neurons and away from axons and dendrites, which extend from the neuron body, forming “somatic channelrhodopsin” (soCoChR). This new opsin enabled photostimulation of individual cells in mouse cortical brain slices with single-cell resolution and with less than 1 millisecond temporal (time) precision --- achieving connectivity mapping on intact cortical circuits without crosstalk with neurons. Regions of stimulation are highlighted by magenta circles. Scale bar: 20 micrometers.  (credit: Or A. Shemesh et al./Nature Nanoscience)

Researchers at MIT and Paris Descartes University have developed a technique for precisely mapping connections of individual neurons for the first time by triggering them with holographic laser light.

The technique is based on optogenetics (using light to stimulate or silence light-sensitive genetically modified protein molecules called “opsins” that are embedded in specific neurons). Current optogenetics techniques can’t isolate individual neurons (and their connections) because… read more

New method 3D-prints fully functional electronic circuits

November 10, 2017

inkjet-printed miniature car ft

Researchers at the University of Nottingham have developed a method for rapidly 3D-printing fully functional electronic circuits such as antennas, medical devices, and solar-energy-collecting structures.

Unlike conventional 3D printers, these circuits can contain both both electrically conductive metallic inks (like the silver wires in the photo above) and insulating polymeric inks (like the yellow and orange support structure). A UV light is used rapidly solidify the inks).… read more

Integrated circuits printed directly onto fabric for the first time

Your future smartphone may be woven into your machine-washable clothes
November 10, 2017

This is a sample circuit printed on fabric. (credit: Felice Torrisi)

Researchers at the University of Cambridge, working with colleagues in Italy and China, have incorporated washable, stretchable, and breathable integrated electronic circuits into fabric for the first time — opening up new possibilities for smart textiles and wearable textile electronic devices.

The circuits were made with cheap, safe, and environmentally friendly inks, and printed using conventional inkjet-printing techniques.

The new method directly prints graphene inks and other two-dimensional… read more

New silicon ‘Neuropixels’ probes record activity of hundreds of neurons simultaneously

Promise to have a major impact on neuroscience
November 8, 2017

A Neuropixels probe, containing nearly 1,000 electrical sensors positioned along a probe thinner than a human hair but long enough to access many regions of a rodent’s brain simultaneously (credit: Howard Hughes Medical Institute)

In a $5.5 million international collaboration, researchers and engineers have developed powerful new “Neuropixels” brain probes that can simultaneously monitor the neural activity of hundreds of neurons at several layers of a rodent’s brain for the first time.

Described in a paper published today (November 8, 2017) in Nature, Neuropixels probes represent a significant advance in neuroscience measurement technology, and will allow for the most precise understanding yet of how large… read more

Scientists decipher mechanisms in cells for extending human longevity

A sirtuin-dependent intermittent pattern of chromatin silencing during yeast aging that is crucial for longevity
November 6, 2017

Aging cells periodically switch their chromatin state. The image illustrates the "on" and "off" patterns in individual cells. (credit: UC San Diego)

A team of scientists at the University of California San Diego led by biologist Nan Hao have combined engineering, computer science, and biology technologies to decode the molecular processes in cells that influence aging.

Protecting DNA from damage

As cells age, damage in their DNA accumulates over time, leading to decay in normal functioning — eventually resulting in death. But a natural biochemical process… read more

New magnetism-control method could lead to ultrafast, energy-efficient computer memory

November 3, 2017

A cobalt layer on top of a gadolinium-iron alloy allows for switching memory with a single laser pulse in just 7 picoseconds. The discovery may lead to a computing processor with high-speed, non-volatile memory right on the chip. (credit:  Jon Gorchon et al./Applied Physics Letters)

Researchers at UC Berkeley and UC Riverside have developed an ultrafast new method for electrically controlling magnetism in certain metals — a breakthrough that could lead to more energy-efficient computer memory and processing technologies.

“The development of a non-volatile memory that is as fast as charge-based random-access memories could dramatically improve performance and energy efficiency of computing devices,” says Berkeley electrical engineering and computer sciences (EECS) professor Jeffrey Bokor,… read more

Daydreaming means you’re smart and creative

It also enables you to switch to "autopilot" for routine tasks like driving
November 1, 2017

MRI scan showing regions of the default mode network (CC)

Daydreaming during meetings or class might actually be a sign that you’re smart and creative, according to a Georgia Institute of Technology study.

“People with efficient brains may have too much brain capacity to stop their minds from wandering,” said Eric Schumacher, an associate psychology professor who co-authored a research paper published in the journal Neuropsychologia.

Participants were instructed to focus on a stationary… read more

A tool to debug ‘black box’ deep-learning neural networks

Brings transparency to self-driving cars and other self-taught systems
October 30, 2017

left or right turn ft

Researchers at Columbia and Lehigh universities have developed a method for error-checking the reasoning of the thousands or millions of neurons in unsupervised (self-taught) deep-learning neural networks, such as those used in self-driving cars.

Their tool, DeepXplore, feeds confusing, real-world inputs into the network to expose rare instances of flawed reasoning, such as the incident last year when Tesla’s autonomous car collided with a truck it mistook for… read more

Researchers watch video images people are seeing, decoded from their fMRI brain scans in near-real-time

Advanced deep-learning "mind-reading" system even interprets image meaning, providing high-level categories (face, bird, etc.)
October 27, 2017

neural encoding and decoding ft

Purdue Engineering researchers have developed a system that can show what people are seeing in real-world videos, decoded from their fMRI brain scans — an advanced new form of  “mind-reading” technology that could lead to new insights in brain function and to advanced AI systems.

The research builds on previous pioneering research at UC Berkeley’s Gallant Lab, which created a computer program in 2011 that translated fMRI brain-wave patterns… read more

IBM scientists say radical new ‘in-memory’ computing architecture will speed up computers by 200 times

New architecture to enable ultra-dense, low-power, massively-parallel computing systems optimized for AI
October 25, 2017

The researchers used PCM devices made from a germanium antimony telluride alloy, which is stacked and sandwiched between two electrodes. When the scientists apply a tiny electric current to the material, they heat it, which alters its state from amorphous (with a disordered atomic arrangement) to crystalline (with an ordered atomic configuration). The IBM researchers have used the crystallization dynamics to perform computation in place. (credit: IBM Research)

IBM Research announced Tuesday (Oct. 24, 2017) that its scientists have developed the first “in-memory computing” or “computational memory” computer system architecture, which is expected to yield 200x improvements in computer speed and energy efficiency — enabling ultra-dense, low-power, massively parallel computing systems.

Their concept is to use one device (such as phase change memory or PCM*) for both storing and processing information. That design would replace… read more

This voice-authentication wearable could block voice-assistant or bank spoofing

Would disable unauthorized voice commands like "OK Google" or "Alexa"
October 23, 2017

"Alexa, open my bank account" (credit: Amazon)

University of Michigan (U-M) scientists have developed a voice-authentication system for reducing the risk of being spoofed when you use a biometric system to log into secure services or a voice assistant (such as Amazon Echo and Google Home).

A hilarious example of spoofing a voice assistant happened during a Google commercial during the 2017 Super Bowl. When actors voiced “OK Google” commands… read more

A sneak peak at radical future user interfaces for phones, computers, and VR

October 20, 2017

Grabity: a wearable haptic interface for simulating weight and grasping in VR (credit: UIST 2017)

Drawing in air, touchless control of virtual objects, and a modular mobile phone with snap-in sections (for lending to friends, family members, or even strangers) are among the innovative user-interface concepts to be introduced at the 30th ACM User Interface Software and Technology Symposium (UIST 2017) on October 22–25 in Quebec City, Canada.

Here are three concepts to be presented, developed by researchers at Dartmouth College’s… read more

AlphaGo Zero trains itself to be most powerful Go player in the world

Self-taught "superhuman" AI already smarter than its makers
October 18, 2017

(credit: DeepMind)

Deep Mind has just announced AlphaGo Zero, an evolution of AlphaGo, the first computer program to defeat a world champion at the ancient Chinese game of Go. Zero is even more powerful and is now arguably the strongest Go player in history, according to the company.

While previous versions of AlphaGo initially trained on thousands of human amateur and professional games to learn how to play Go,… read more

Leading brain-training game improves memory and attention better than competing method

October 18, 2017

brain-training graphic ft

A leading brain-training game called “dual n-back” was significantly better in improving memory and attention than a competing “complex span” game, Johns Hopkins University researchers found in a recent experiment.*

These results, published Monday Oct. 16, 2017 in an open-access paper in the Journal of Cognitive Enhancement, suggest it’s possible to train the brain like other body parts — with targeted workouts to improve the… read more

Scientists report first detection of gravitational waves produced by colliding neutron stars

A cosmic sound-and-light show
October 16, 2017

Astronomers detect gravitational waves and a gamma-ray burst from two colliding neutron stars. (credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet)

Scientists reported today (Oct. 16, 2017) the first simultaneous detection of both gravitational waves and light — an astounding collision of two neutron stars.

The discovery was made nearly simultaneously by three gravitational-wave detectors, followed by observations by some 70 ground- and space-based light observatories.

Neutron stars are the smallest, densest stars known to exist and are formed when massive stars explode in supernovas.

MIT |read more

Page 2 of 1,22012345678910last
close and return to Home