science + technology news

How to build your own bio-bot

Building blocks for the biomachines of the future
February 14, 2017

Bio-bot design inspired by the muscle-tendon-bone complex found in the human body, with 3D-printed flexible skeleton. Optical stimulation of the muscle tissue (orange), which is genetically engineered to contract in response to blue light, makes the bio-bot walk across a surface in the direction of the light. (credit: Ritu Raman et al./Nature Protocols)

For the past several years, researchers at the University of Illinois at Urbana-Champaign have reverse-engineered native biological tissues and organs — creating tiny walking “bio-bots” powered by muscle cells and controlled with electrical and optical pulses.

Now, in an open-access cover paper in Nature Protocols, the researchers are sharing a protocol with engineering details for their current generation of millimeter-scale soft robotic bio-bots*.

Using 3D-printed skeletons, these… read more

Soft robotic sleeve developed to aid failing hearts

Could be implanted to restore blood circulation
January 27, 2017

A soft robotic sleeve placed around the heart in a pig model of acute heart failure. The actuators embedded in the sleeve support heart function by mimicking the outer heart muscles that induce the heart to beat. (credit: Harvard SEAS)

An international team of scientists has developed a soft robotic sleeve that can be implanted on the external surface of the heart to restore blood circulation in pigs (and possibly humans in the future) whose hearts have stopped beating.

The device is a silicone-based system with two layers of actuators: one that squeezes circumferentially and one that squeezes diagonally, both designed to mimic the movement of healthy hearts when… read more

A deep learning algorithm outperforms some board-certified dermatologists in diagnosis of skin cancer

January 25, 2017

A dermatologist uses a dermatoscope, a type of handheld microscope, to look at skin. Computer scientists at Stanford have created an artificially intelligent diagnosis algorithm for skin cancer that matched the performance of board-certified dermatologists. (Image credit: Matt Young)

Deep learning has been touted for its potential to enhance the diagnosis of diseases, and now a team of researchers at Stanford has developed a deep-learning algorithm that may make this vision a reality for skin cancer.*

The researchers, led by Dr. Sebastian Thrun, an adjunct professor at the Stanford Artificial Intelligence Laboratory, reported in the January 25 issue of Nature that their deep convolutional neural network (CNN) algorithm… read more

A 3D bioprinter that prints fully functional human skin

January 24, 2017

3d skin bioprinter ft

A prototype 3D bioprinter that can create totally functional human skin has been developed by scientists from Universidad Carlos III de Madrid (UC3M) and BioDan Group in Spain. The skin has been used to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain, according to the scientists.

The system provides two processes.

Autologous skin (from… read more

A ‘smart’ patch that automatically delivers insulin when needed

Replaces finger-pricking and insulin shots
January 20, 2017

Tiny, painless microneedles on a patch can deliver insulin in response to rising glucose levels. (credit: American Chemical Society)

A team of scientists has invented a replacement for daily glucose-level finger-pricking and insulin shots: a painless “smart” patch that monitors blood glucose and releases insulin when levels climb too high.

The report on the device, which has only been tested on mice so far, appears in the journal ACS Nano.

People with Type 1 diabetes don’t make insulin — a hormone that regulates blood glucose (sugar). Those with… read more

Wearable sensors can alert you when you are getting sick, Stanford study shows

January 18, 2017

iHeath sensor ft

Fitness monitors and other wearable biosensors can tell when your heart rate, activity, skin temperature, and other measures are abnormal, suggesting possible illness, including the onset of infection, inflammation, and even insulin resistance, according to a study by researchers at the Stanford University School of Medicine.

The team collected nearly 2 billion measurements from 60 people, including continuous data from each participant’s wearable biosensor devices* and periodic data… read more

Intricate microdevices that can be safely implanted

Applications include a drug-delivery system to provide tailored drug doses for precision medicine, catheters, stents, cardiac pacemakers, and soft microbotics
January 13, 2017

Implantable microrobots ft

Columbia Engineering researchers have invented a technique for manufacturing complex microdevices with three-dimensional, freely moving parts made from biomaterials that can safely be implanted in the body. Potential applications include a drug-delivery system to provide tailored drug doses for precision medicine, catheters, stents, cardiac pacemakers, and soft microbotics.

Most current implantable microdevices have static components rather than moving parts and, because they require batteries or other toxic… read more

MRI breakthroughs include ultra-sensitive MRI magnetic field sensing, more-sensitive monitoring without chemical or radioactive labels

Heart mechanical contractions recorded in MRI machine for first time; hope to monitor neurotransmitters at 100 times lower levels
December 30, 2016

Highly sensitive magnetic field sensor (credit: ETH Zurich / Peter Rüegg)

Swiss researchers have succeeded in measuring changes in strong magnetic fields with unprecedented precision, they report in the open-access journal Nature Communications. The finding may find widespread use in medicine and other areas.

In their experiments, the researchers at the Institute for Biomedical Engineering, which is operated jointly by ETH Zurich and the University of Zurich, magnetized a water droplet inside a magnetic resonance imaging… read more

Immune cells in covering of brain discovered; may play critical role in battling neurological diseases

December 28, 2016

A composite image showing the immune cells. In addition to being important defenders of the brain, the cells may also may be the missing link connecting the brain's immune response to the microbiome in the gut. That relationship already has been shown important in Parkinson's disease. (credit: Sachin Gadani | University of Virginia School of Medicine)

University of Virginia School of Medicine researchers have discovered a rare and powerful type of immune cell in the meninges (protective covering) of the brain that are activated in response to central nervous system injury — suggesting that these cells may play a critical role in battling Alzheimer’s, multiple sclerosis, meningitis, and other neurological diseases, and in supporting healthy mental functioning.

By harnessing the power of the cells, known as… read more

Using graphene to detect brain cancer cells

December 20, 2016

GBM cell on graphene ft

By interfacing brain cells with graphene, University of Illinois at Chicago researchers have differentiated a single hyperactive Glioblastoma Multiforme cancerous astrocyte cell from a normal cell in the lab — pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.

In the study, reported in the journal ACS Applied Materials & Interfaces, the researchers looked at lab-cultured human brain astrocyte cells taken from a… read more

How diabetes drug metformin prevents, suppresses cancer growth

Ancient genetic pathway suggests new ways to fight cancers and support healthy aging
December 16, 2016

Metformin growth inhibition process (credit: Lianfeng Wu et al./Cell)

A team of Massachusetts General Hospital (MGH) and Harvard Medical School investigators has identified a pathway that appears to underlie the apparent ability of the diabetes drug metformin to both block the growth of human cancer cells and extend the lifespan of the C.elegans roundworm.

That finding implies that this single genetic pathway may play an important role in a wide range of organisms — including humans.

“We… read more

Trump considering libertarian reformer to head FDA

Peter Thiel associate advocates anti-aging medicine and patient freedom to use new drugs found safe, at their own risk
December 10, 2016

(credit: Seasteading Institute)

President-elect Donald Trump’s transition team is considering libertarian Silicon Valley investor Jim O’Neill, a Peter Thiel associate, to head the Food and Drug Administration, Bloomberg Politics has reported.

O’Neill, the Managing Director of Mithril Capital Management LLC, doesn’t have a medical background, but served in the George W. Bush administration as principal associate deputy secretary at the Department of Health and Human Services.… read more

Implantable device targets cancer, other illnesses with controlled long-term drug delivery

5000 nanochannels control release; can deliver medicinal doses for several days or a few weeks, also effective for HIV and damaged joints
December 2, 2016

This diagram describes how the device Dr. Hood helped to develop is implanted into a cancerous tumor. (credit: Lyle Hood/UTSA)

A new drug-delivery system based on an tiny implantable capsule could “revolutionize” the delivery of medicine to treat cancer and a host of other diseases and ailments, according to researchers at The University of Texas at San Antonio (UTSA).

“The problem with most drug-delivery systems is that you have a specific minimum dosage of medicine that you need to take for it to be effective,” said… read more

Smart skin patch releases blood thinners in closed-loop control system

Prevents both thrombosis and spontaneous hemorrhaging; no need for patients to test blood on a regular basis
November 30, 2016

The thrombin-responsive microneedle patch is made of heparin-modified hyaluronic acid. (credit: Yuqi Zhang)

North Carolina researchers have developed a smart skin patch designed to monitor a patient’s blood and release a blood-thinning drug, as needed, to prevent thrombosis (dangerous blood clots).

Thrombosis — one of the leading causes of cardiovascular mortalities and morbidities worldwide — occurs when blood clots disrupt the normal flow of blood in the body, which can cause severe health problems such as pulmonary embolism, heart attack, or stroke.… read more

This tiny electronic device applied to the skin can pick up heart and speech sounds

November 18, 2016

Researchers from the University of Colorado Boulder and Northwestern University have developed a tiny, soft, wearable acoustic sensor that measures vibrations in the human body and can be used to monitor human heart health and recognize spoken words.

The stretchable Band-aid-like device attaches to the skin on nearly any surface of the body, using “epidermal electronics” to capture sound signals from the body.

It’s… read more

close and return to Home