science + technology news

Page 4 of 1,21212345678910last

Future ‘lightwave’ computers could run 100,000 times faster

March 14, 2017

TeraHertz pulses in semiconductor crystal (credit: Fabian Langer, Regensburg University)

Using extremely short pulses of teraHertz (THz) radiation instead of electrical currents could lead to future computers that run ten to 100,000 times faster than today’s state-of-the-art electronics, according to an international team of researchers, writing in the journal Nature Photonics.

In a conventional computer, electrons moving through a semiconductor occasionally run into other electrons, releasing energy in the form of heat and slowing them down. With the proposed… read more

Engineers shrink atomic-force microscope to dime-sized device

March 10, 2017

A MEMS-based atomic force microscope developed by engineers at the University of Texas at Dallas that is about 1 square centimeter in size (top center), shown attached here to a small printed circuit board that contains circuitry, sensors and other miniaturized components that control the movement and other aspects of the device. (credit: University of Texas at Dallas)

University of Texas at Dallas researchers have created an atomic force microscope (AFM) on a chip, dramatically shrinking the size — and, hopefully, the price — of a microscope used to characterize material properties down to molecular dimensions.

“A standard atomic force microscope is a large, bulky instrument, with multiple control loops, electronics and amplifiers,” said Dr. Reza Moheimani, professor of mechanical engineering at UT Dallas.  “We have… read more

A biocompatible stretchable material for brain implants and ‘electronic skin’

March 10, 2017

stretchy polymer-ft

Stanford chemical engineers have developed a soft, flexible plastic electrode that stretches like rubber but carries electricity like wires — ideal for brain interfaces and other implantable electronics, they report in an open-access March 10 paper in Science Advances.

Developed by Zhenan Bao, a professor of chemical engineering, and his team, the material is still a laboratory prototype, but the team hopes to develop it… read more

Brain has more than 100 times higher computational capacity than previously thought, say UCLA scientists

Dendrites found to generate nearly 10 times more electrochemical spikes than neuron cell bodies
March 10, 2017

Neuron (blue) with dendrites (credit: Shelley Halpain/UC San Diego)

The brain has more than 100 times higher computational capacity than was previously thought, a UCLA team has discovered.

Obsoleting neuroscience textbooks, this finding suggests that our brains are both analog and digital computers and could lead to new approaches for treating neurological disorders and developing brain-like computers, according to the researchers.

Dendrites have been considered simple passive conduits of signals. But by working… read more

IBM-led international research team stores one bit of data on a single atom

Could lead to 1,000 times higher storage density in the future
March 9, 2017

Scanning tunneling microscope image of a single atom of holmium, an element that researchers used as a magnet to store one bit of data. (credit: IBM Research -- Almaden)

An international team led by IBM has created the world’s smallest magnet, using a single atom of rare-earth element holmium, and stored one bit of data on it over several hours.

The achievement represents the ultimate limit of the classical approach to high-density magnetic storage media, according to a paper published March 8 in the journal Nature.

Currently, hard disk drives use about 100,000 atoms to store a single… read more

How to control robots with your mind

Making robots useful collaborators at home and at work
March 7, 2017

The robot is informed that its initial motion was incorrect based upon real-time decoding of the observer’s EEG signals, and it corrects its selection accordingly to properly sort an object. (credit: Andres F. Salazar-Gomez et al./MIT, Boston University)

Two research teams are developing new ways to communicate with robots and shape them one day into the kind of productive workers featured in the current AMC TV show HUMANS (now in second season).

Programming robots to function in a real-world environment is normally a complex process. But now a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Boston University is creating a system… read more

Should we use CRISPR to domesticate wild plants, creating ‘biologically inspired organisms’?

"We don't want to improve nature, we want to benefit from what nature has already created."
March 3, 2017

Future logo? (credit: KurzweilAI)

Here’s a radical new idea for creating new GMO (genetically modified organism) plants that may appeal to staunch organic-food consumers/farmers and even #NonGMOProjectVerified advocates: don’t insert a foreign gene in today’s domestic plants — delete already existing genes in semi-domesticated or even wild plants to make those plants more domestic, and reducing pesticide use in the process.

“All of the plants we eat today are… read more

Programmable shape-shifting molecular robots respond to DNA signals

Could function like living organisms in the near future, programmed by DNA computers
March 3, 2017

molecular robot ft

Japanese researchers have developed an amoeba-like shape-changing molecular robot — assembled from biomolecules such as DNA, proteins, and lipids — that could act as a programmable and controllable robot for treating live culturing cells or monitoring environmental pollution, for example.

This the first time a molecular robotic system can recognize signals and control its shape-changing function, and their molecular robots could in the near future function in a way similar… read more

Groundbreaking technology rewarms large-scale animal tissues preserved at low temperatures

A major step toward long-term preservation of organs and tissues for transplantation; could lead to saving millions of human lives
March 2, 2017

Inductive heating of magnetic nanoparticles warms tissue preserved at very low temperatures without damage (credit: Navid Manuchehrabadi et al./Science Translational Medicine)

A research team led by the University of Minnesota has discovered a way to rewarm large-scale animal heart valves and blood vessels preserved at very low (cryogenic) temperatures without damaging the tissue. The discovery could one day lead to saving millions of human lives by creating cryogenic tissue and organ banks of organs and tissues for transplantation.

The research was published March 1… read more

Tiny fibers open new windows into the brain

March 2, 2017

A multifunctional flexible fiber for brain research (credit: Seongjun Park et al./Nature Neuroscience)

Imagine a single flexible polymer fiber 200 micrometers across — about the width of a human hair — that can deliver a combination of optical, electrical, and chemical signals between different brain regions, with the softness and flexibility of brain tissue — allowing neuroscientists to leave implants in place and have them retain their functions over much longer periods than is currently possible with typical stiff, metallic fibers.

That’s what… read more

Join the around-the-world 24-hour conversation on the future to celebrate World Future Day March 1

March 1, 2017

Futurists from the 55 Millennium Project nodes worldwide, other organizations, and the public will go online March 1 to exchange ideas about the future

Futurists worldwide plan to celebrate March 1 as World Future Day with a 24-hour conversation about the world’s potential futures, challenges, and opportunities.

At 12 noon your local time on March 1, you can click on a Google hangout at goo.gl/4hCJq3 and join the conversation* (log in with a Google account).  It starts at 12 noon (midnight in New York) in Auckland, New Zealand and moves across the world,… read more

Brain-imaging headband measures how our minds mirror a speaker when we communicate

February 28, 2017

This is a cartoon image of brain 'coupling' during communication (credit: Drexel University)

Drexel University biomedical engineers and Princeton University psychologists have used a wearable brain-imaging device called functional near-infrared spectroscopy (fNIRS) to measure brain synchronization when humans interact. fNIRS uses light to measure neural activity in the cortex of the brain (based on blood-oxygenation changes) during real-life situations and can be worn like a headband.

(KurzweilAI recently covered research with a fNIRS brain-computer interface that allows completely locked-in patients to… read more

Billionaire Softbank CEO Masayoshi Son plans to invest in singularity

February 27, 2017

Masayoshi Son (credit: Softbank Group)

Billionaire Softbank Group Chairman and CEO Masayoshi Son revealed Monday (Feb. 27) at Mobile World Congress his plan to invest in singularity. “In next 30 years [the singularity] will become a reality,” he said, Tech Crunch reports.

“If superintelligence goes inside the moving device then the world, our lifestyle dramatically changes,” he said. “There will be many kinds. Flying, swimming, big, micro, run, 2 legs,… read more

Neural networks promise sharpest-ever telescope images

May improve existing and future images of the TRAPPIST-1 exoplanets recently discovered by NASA
February 27, 2017

astrophysical images of a galaxy ft

Swiss researchers are using neural networks to achieve the sharpest-ever images in optical astronomy. The work appears in an open-access paper in Monthly Notices of the Royal Astronomical Society.

The aperture (diameter) of any telescope is fundamentally limited by its lens or mirror. The bigger the mirror or lens, the more light it gathers, allowing astronomers to detect fainter objects, and to observe them… read more

An ultra-low-power artificial synapse for neural-network computing

Brain-like device with 500 states instead of binary could one day communicate with live neurons, merging computers with the brain
February 24, 2017

ENODe synapse

Stanford University and Sandia National Laboratories researchers have developed an organic artificial synapse based on a new memristor (resistive memory device) design that mimics the way synapses in the brain learn. The new artificial synapse could lead to computers that better recreate the way the human brain processes information. It could also one day directly interface with the human brain.

The new artificial synapse is an… read more

Page 4 of 1,21212345678910last
close and return to Home