Recently Added Most commented

Emulating animals, these robots can recover from damage in two minutes

The kind of robot you'd want to take on a hazardous mission
June 1, 2015

This is one of the robots introduced in the paper 'Robots that can adapt like animals.' (credit: Antoine Cully)

Researchers in France and the U.S. have developed a new technology that enables robots to quickly recover from an injury in less than two minutes, similar to how injured animals adapt. Such autonomous mobile robots would be useful in remote or hostile environments such as disaster areas, space, and deep oceans.

The video above shows a six-legged robot that adapts to keep walking even if two of its legs… read more

MIT cheetah robot now jumps over obstacles autonomously

First four-legged robot to run and jump over obstacles autonomously
June 1, 2015

MIT researchers have trained their robotic cheetah to see and jump over hurdles as it runs — making this the first four-legged robot to run and jump over obstacles autonomously (credits: Haewon Park, Patrick Wensing, and Sangbae Kim)

Massachusetts Institute of Technology| MIT cheetah robot lands the running jump

The MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs — making it the first four-legged robot to run and jump over obstacles autonomously.

The robot estimates an obstacle’s height and distance, gauges the best distance from which to jump, and adjusts… read more

A 99% biodegradable computer chip

May 29, 2015

A cellulose nanofibril (CNF) computer chip rests on a leaf. (credit: Yei Hwan Jung, Wisconsin Nano Engineering Device Laboratory)

University of Wisconsin-Madison and U.S. Department of Agriculture Forest Products Laboratory (FPL) researchers have jointly developed a wood chip in an effort to alleviate the environmental burden* of electronic devices.

Well, actually, a wood-substrate-based semiconductor chip. They replaced the silicon substrate portion in a conventional chip with environment-friendly cellulose nanofibril (CNF). CNF is a flexible, biodegradable material made from wood, as the researchers note in an… read more

Psychedelic drugs should be legally reclassified, says psychiatrist

Pre-1967 research showed "beneficial change in many psychiatric disorders"
May 28, 2015

(credit: Salvador Dali)

Psychedelic drugs such as LSD are much less harmful than claimed and should be legally reclassified to allow further research on their medical use, says James Rucker, a psychiatrist and honorary lecturer at the Institute of Psychiatry, Psychology and Neuroscience, King’s College London.

These substances “were extensively used and researched in clinical psychiatry” before their prohibition in 1967 and many trials of these drugs in the 1950s and 1960s… read more

Medical ‘millirobots’ could replace invasive surgery

Using a “Gauss gun” principle, an MRI machine drives a “millirobot” through a hypodermic needle into your spinal cord and guides it into your brain to release life-threatening fluid buildup ...
May 28, 2015

Millirobot components (credit: Aaron T. Becker et al./Proceedings of the IEEE)

University of Houston researchers have developed a concept for MRI-powered millimeter-size “millirobots” that could one day perform unprecedented minimally invasive medical treatments.

This technology could be used to treat hydrocephalus, for example. Current treatments require drilling through the skull to implant pressure-relieving shunts, said Aaron T. Becker, assistant professor of electrical and computer engineering at the University of Houston.

But MRI scanners alone don’t produce enough force to… read more

New tech keeps your smart phone charged for 30 percent longer

Invention captures wasted cell phone energy, feeds it back to battery
May 27, 2015

(credit: iStock)

Engineers  at The Ohio State University claim they have created a circuit that makes cell phone batteries last up to 30 percent longer on a single charge. The trick: it converts some of the radio signals emanating from a phone into direct current (DC) power, which then charges the phone’s battery, they state.

This new technology can be built into a cell phone case, adding minimal bulk and weight.… read more

Disney researchers develop 2-legged robot that walks like an animated character

May 27, 2015

Robot character mimic

Disney researchers have found a way for a robot to mimic an animated character’s walk, bringing a cartoon (or other) character to life in the real world.

Beginning with an animation of a diminutive, peanut-shaped character that walks with a rolling, somewhat bow-legged gait, Katsu Yamane and his team at Disney Research Pittsburgh analyzed the character’s motion to design a robotic frame that could duplicate the walking motion. using… read more

Intelligent handheld robots could make is easier for people to learn new skills

May 27, 2015

An intelligent handheld robot assisting a user in placing the correct colored tiles (credit: University of Bristol)

What if your handheld tools knew what needs to be done and were even able to guide and help you complete jobs that require skills? University of Bristol researchers are finding out by building and testing intelligent handheld robots.

Think of them as smart power tools that “know” what they’re doing — and could even help you use them.

The robot tools would have three levels of autonomy,… read more

A chip implanted under the skin allows for precise, real-time medical monitoring

May 27, 2015

Under-the-skin chip (credit: EPFL)

A tiny (one-centimeter-square) biosensor chip developed at EPFL is designed to be implanted under your skin to continuously monitor concentrations of pH, temperature, and metabolism-related molecules like glucose, lactate and cholesterol, as well as some drugs.

The chip would replace blood work, which may take  hours — or even days — for analysis and is a limited snapshot of conditions at the moment the blood is drawn.

Developer… read more

Dynamically reprogramming matter

Engineering switchable reconfigurations in DNA-controlled nanoparticle arrays could lead to dynamic energy-harvesting or responsive optical materials
May 26, 2015

phase change ft

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have developed the capability of creating dynamic nanomaterials — ones whose structure and associated properties can be switched, on-demand. In a paper appearing in Nature Materials, they describe a way to selectively rearrange nanoparticles in three-dimensional arrays to produce different configurations, or “phases,” from the same nano-components.

“One of the goals in nanoparticle self-assembly has been to create structures by… read more

Creating complex structures using DNA origami and nanoparticles

Could create new molecular structures to harvest solar energy, deliver biomolecules, or manipulate light for telecommunications
May 26, 2015

Cluster assembled from DNA-functionalized gold nanoparticles on vertices of a octahedral DNA origami structure (credit: Ye Tian et al./Nature Nanotechnology)

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and collaborators have developed a method using DNA for designing new customized materials with complex structures for applications in energy, optics, and medicine.

They used ropelike configurations of DNA to form a rigid geometrical framework and then added dangling pieces of single-stranded DNA to glue nanoparticles in place.

The method, described in the journal Nature Nanotechnology, produced predictable… read more

One step closer to a single-molecule device

One possible route after Moore's law expires
May 25, 2015

Molecular diode (credit: Columbia Engineering)

Columbia Engineering researchers have created the first single-molecule diode — the ultimate in miniaturization for electronic devices — with potential for real-world applications in electronic systems.

The diode that has a high (>250) rectification and a high “on” current (~ 0.1 microamps), says Latha Venkataraman, associate professor of applied physics. “Constructing a device where the active elements are only a single molecule … which has been… read more

Fly-catching robot speeds biomedical research

Good news for overworked graduate students and for researchers of human aging, cancer, diabetes, and other diseases
May 25, 2015

A fruit fly hangs unharmed at the end of the robot's suction tube. The robot uses machine vision to inspect and analyze the captured fly. (credit: Stanforf Bio-X)

Stanford Bio-X scientists have created a robot that speeds and extends biomedical research with a common laboratory organism — fruit flies (Drosophila).

The robot can visually inspect awake flies and carry out behavioral experiments that were impossible with anesthetized flies. The work is described today (May 25) in the journal Nature Methods.

“Robotic technology offers a new prospect for automated experiments and enables fly researchers to do… read more

Converting blood stem cells to sensory neural cells to predict and treat pain

Allows for discovering new pain drugs and predicting effects for individual patients
May 25, 2015

stem cell to neuron

Stem-cell scientists at McMaster University have developed a way to directly convert adult human blood cells to sensory neurons, providing the first objective measure of how patients may feel things like pain, temperature, and pressure, the researchers reveal in an open-access paper in the journal Cell Reports.

Currently, scientists and physicians have a limited understanding of the complex issue of pain and how to treat it. “The problem is that… read more

Combining light and sound to create nanoscale optical waveguides

Could lead to chips that combine optical and electronic components
May 24, 2015

Researchers have shown that a DC voltage applied to layers of graphene and boron nitride can be used to control light emission from a nearby atom. Here, graphene is represented by a maroon-colored top layer; boron nitride is represented by yellow-green lattices below the graphene; and the atom is represented by a grey circle. A low concentration of DC voltage (in blue) allows the light to propagate inside the boron nitride, forming a tightly confined waveguide for optical signals. (Credit: Anshuman Kumar Srivastava and Jose Luis Olivares/MIT)

In a new discovery that could lead to chips that combine optical and electronic components, researchers at MIT, IBM and two universities have found a way to combine light and sound with far lower losses than when such devices are made separately and then interconnected, they say.

Light’s interaction with graphene produces vibrating electron particles called plasmons, while light interacting with hexagonal boron nitride (hBN) produces phonons (sound “particles”).… read more

close and return to Home