Recently Added Most commented

Clearing out the clutter: ‘senolytic’ drugs improve vascular health in mice

Reduced calcification of plaques on blood-vessel walls
February 11, 2016

coronary-artery ft

Mayo Clinic researchers have demonstrated the first study in which repeated treatments to remove senescent cells (cells that stop dividing due to age or stress) in mice improve age-related vascular conditions — and may possibly reduce cardiovascular disease and death.

The researchers intermittently gave the mice a cocktail of two senolytic drugs (ones that selectively induce cell death): dasatinib (a cancer drug, trade… read more

Could humans ever regenerate limbs?

February 10, 2016

finger regrowth ft

Just lopped off your ring finger slicing carrots (some time in the future)? No problem. Just speed-read this article while you’re waiting for the dronebulance. …

“Epimorphic regeneration” — growing digits, maybe even limbs, with full 3D structure and functionality — may one day be possible. So say scientists at Tulane University, the University of Washington, and the University of Pittsburgh, writing in a review article just published in… read more

New cryopreservation procedure wins Brain Preservation Prize

First preservation of the connectome demonstrated in a whole brain
February 9, 2016

rabbit brain ft

The Brain Preservation Foundation (BPF) has announced that a team at 21st Century Medicine led by Robert McIntyre, PhD., has won the Small Mammal Brain Preservation Prize, which carries an award of $26,735.

The Small Mammalian Brain Preservation Prize was awarded after the determination that the protocol developed by McIntyre, termed Aldehyde-Stabilized Cryopreservation, was able to preserve an entire rabbit brain with well-preserved ultrastructure, including… read more

Mitochondria trigger cell aging, researchers discover

How to rejuvenate or prevent aging in human and mice cells
February 5, 2016

Components of a typical mitochondrion (credit: Kelvinsong/Creative Commons)

An international team of scientists led by João Passos at Newcastle University has for the first time shown that mitochondria (the “batteries” of the cells) are major triggers for aging, and eliminating them upon the induction of senescence prevents senescence in the aging mouse liver.

As we grow old, cells in our bodies accumulate different types of damage and have increased inflammation, factors that are thought to contribute… read more

Future of drug delivery seen in a crystal ball

Not flakey --- and a few 100 times stronger than liposomes
February 3, 2016

crystalsome

A Drexel University materials scientist has discovered a way to encapsulate medication to deliver it more effectively inside the body.

Until now, crystals have grown in rigid, structured formations (like the snowflake) — with a web of straight lines connecting to making a grid that grows into the crystalline flake.*

But the formation of a crystal is affected by the environment in which it forms. And Christopherread more

Mayo Clinic researchers extend lifespan by up to 35 percent in mice

February 3, 2016

Aged mice with and without senescent cell clearance (credit: Mayo Clinic)

Researchers at Mayo Clinic have discovered that senescent cells — cells that no longer divide and accumulate with age — shorten lifespan by as much as 35 percent in normal mice.

Removing these aging cells delays tumor formation, preserves tissue and organ function, and extends lifespan without observed adverse effects, the researchers found, writing Feb. 3 in Nature.

“Cellular senescence is a biological mechanism that functions as… read more

Mechanotherapy may replace drug and cellular therapies for injured muscle tissue

January 28, 2016

microscopic-images-ft

Engineers and biomedical scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard School of Engineering and Applied Sciences have developed a promising new approach for repairing severely damaged skeletal muscles: direct mechanical stimulation. It may be appropriate for major injuries commonly caused by motor vehicle accidents, other traumas, or nerve damage, which can lead to extensive scarring, fibrous tissue, and loss… read more

A flexible, transparent pressure sensor

A more sensitive way for doctors (or robots) to palpate tumors
January 26, 2016

The pressure sensors wrap around and conform to the shape of the fingers while still accurately measuring pressure distribution. (credit: 2016 Someya Laboratory)

Doctors may one day be able to physically screen for breast cancer using pressure-sensitive rubber gloves to detect tumors, thanks to a transparent, bendable, and sensitive pressure sensor newly developed by Japanese and American teams.

Conventional pressure sensors can’t measure pressure changes accurately once they are twisted or wrinkled, making them unsuitable for use on complex and moving surfaces, and they can’t be miniaturized below 100 micrometers (0.1 millimeters)… read more

New handheld miniature microscope could ID cancer cells in doctor’s offices and operating rooms

January 25, 2016

University of Washington mechanical engineers and collaborators have developed a handheld microscope to help doctors and dentists distinguish between healthy and cancerous cells in an office setting or operating room. (credit: Dennis Wise/University of Washington)

A miniature handheld microscope being developed by University of Washington mechanical engineers could allow neurosurgeons to differentiate cancerous from normal brain tissue at cellular level in real time in the operating room and determine where to stop cutting.

The new technology is intended to solve a critical problem in brain surgery: to definitively distinguish between cancerous and normal brain cells, during an operation, neurosurgeons would have stop the… read more

Detecting heartbeats remotely with millimeter-wave radar

May replace electrocardiograph devices, allowing for freedom of movement and use by patients
January 22, 2016

Japanese researchers have come up with a way to measure heartbeats remotely, in real time, and under controlled conditions with as much accuracy as electrocardiographs. The technology utilizes spread-spectrum radar to catch signals from the body and an algorithm that distinguishes heartbeats from other signals. (credit: Kyoto University)

A radar system that measures heartbeats remotely in real time and with as much accuracy as electrocardiographs has been developed by researchers at the Kyoto University Center of Innovation and Panasonic Corporation,

The results were published in an open-access paper in the journal IEEE Transactions on Biomedical Engineering.

The researchers say this new approach will allow for developing long-term monitoring and “casual… read more

Could this common painkiller become a future cancer-killer?

January 12, 2016

(credit: iStock)

Diclofenac, a common painkiller, has significant anti-cancer properties, researchers from the Repurposing Drugs in Oncology (ReDO) project have found.

ReDO, an international collaboration between the Belgium-based Anticancer Fund and the U.S.- based GlobalCures, has published their investigation into diclofenac in the open-access journal ecancermedicalscience.

Diclofenac is a well-known non-steroidal anti-inflammatory drug (NSAID) widely used to treat pain in conditions such as rheumatoid arthritis, migraine, fever, acute… read more

Microfluidic biochip for simple, fast, low-cost blood cell counts

December 23, 2015

Schematic of the leukocyte counting chip with lysing, quenching, and counter modules shown in different colors. The insert (upper left) is an enlarged view of the platinum microfabricated electrodes (yellow). (credit: U. Hassan et al./TECHNOLOGY)

A microfluidic biosensor that can count red blood cells, platelets, and white blood cells electrically using just one drop of blood (11 microL) has been developed by University of Illinois at Urbana-Champaign (UIUC) researchers, replacing the standard hematology analyzer, a large, expensive lab device that requires trained technicians and physical sample transportation.

The new biosensor can electrically count the different types of blood cells based on their… read more

Worm research in life extension leads scientists to discover new metric to track aging

Living longer usually means a living longer in old age, but wouldn't it better to extend young adulthood instead?
December 10, 2015

C. elegans nematode worm (credit: The Goldstein Lab)

When researchers at The Scripps Research Institute (TSRI) in California administered an antidepressant called mianserin to the Caenorhabditis elegans roundworm in 2007, they discovered the drug increased the lifespan of the “young adulthood” of roundworms by 30–40 per cent.

So, does that mean it will work in humans? Not necessarily. “There are millions of years of evolution between worms and humans,” says TSRI researcher Michael… read more

‘Nanobombs’ that blow up cancer cells

These nanoparticles contain a chemical used in baking bread that makes cancer cells swell and burst when exposed to near-infrared laser light
December 7, 2015

nanobomb ft

Researchers at The Ohio State University Comprehensive Cancer Center have developed nanoparticles that swell and burst when exposed to near-infrared laser light.

These “nanobombs” may be able to kill cancer cells outright, or at least stall their growth — overcoming a biological barrier that has blocked development of drug agents that attempt to alter cancer-cell gene expression (conversion of genes to proteins). These kinds of drug agents… read more

Google Glass helps cardiologists complete difficult coronary artery blockage surgery

November 20, 2015

coronary artery ft

Cardiologists from the Institute of Cardiology, Warsaw, Poland have used Google Glass in a challenging surgical procedure, successfully clearing a blockage in the right coronary artery of a 49-year-old male patient and restoring blood flow, reports the Canadian Journal of Cardiology.

Chronic total occlusion, a complete blockage of the coronary artery, sometimes referred to as the “final frontier in interventional cardiology,” represents a major challenge for catheter-based… read more

close and return to Home