science + technology news

Microfluidic biochip for simple, fast, low-cost blood cell counts

December 23, 2015

Schematic of the leukocyte counting chip with lysing, quenching, and counter modules shown in different colors. The insert (upper left) is an enlarged view of the platinum microfabricated electrodes (yellow). (credit: U. Hassan et al./TECHNOLOGY)

A microfluidic biosensor that can count red blood cells, platelets, and white blood cells electrically using just one drop of blood (11 microL) has been developed by University of Illinois at Urbana-Champaign (UIUC) researchers, replacing the standard hematology analyzer, a large, expensive lab device that requires trained technicians and physical sample transportation.

The new biosensor can electrically count the different types of blood cells based on their… read more

Worm research in life extension leads scientists to discover new metric to track aging

Living longer usually means a living longer in old age, but wouldn't it better to extend young adulthood instead?
December 10, 2015

C. elegans nematode worm (credit: The Goldstein Lab)

When researchers at The Scripps Research Institute (TSRI) in California administered an antidepressant called mianserin to the Caenorhabditis elegans roundworm in 2007, they discovered the drug increased the lifespan of the “young adulthood” of roundworms by 30–40 per cent.

So, does that mean it will work in humans? Not necessarily. “There are millions of years of evolution between worms and humans,” says TSRI researcher Michael… read more

‘Nanobombs’ that blow up cancer cells

These nanoparticles contain a chemical used in baking bread that makes cancer cells swell and burst when exposed to near-infrared laser light
December 7, 2015

nanobomb ft

Researchers at The Ohio State University Comprehensive Cancer Center have developed nanoparticles that swell and burst when exposed to near-infrared laser light.

These “nanobombs” may be able to kill cancer cells outright, or at least stall their growth — overcoming a biological barrier that has blocked development of drug agents that attempt to alter cancer-cell gene expression (conversion of genes to proteins). These kinds of drug agents… read more

Google Glass helps cardiologists complete difficult coronary artery blockage surgery

November 20, 2015

coronary artery ft

Cardiologists from the Institute of Cardiology, Warsaw, Poland have used Google Glass in a challenging surgical procedure, successfully clearing a blockage in the right coronary artery of a 49-year-old male patient and restoring blood flow, reports the Canadian Journal of Cardiology.

Chronic total occlusion, a complete blockage of the coronary artery, sometimes referred to as the “final frontier in interventional cardiology,” represents a major challenge for catheter-based… read more

Growing functional vocal cords in the lab

November 19, 2015

Engineered vocal-cord tissue in lab (credit: Changying Ling et al./Tissue Engineering)

University of Wisconsin scientists have succeeded in growing functional vocal-cord tissue in the laboratory and bioengineering it to transmit sound, a major step toward restoring voice for people who have lost their vocal cords to cancer surgery or other injuries.

Dr. Nathan Welham, a speech-language pathologist and an associate professor of surgery in the UW School of Medicine and Public Health, and colleagues began with vocal-cord tissue… read more

Pigeons diagnose breast cancer on X-rays as well as radiologists

When "flock-sourcing," they do better, with 99 percent accuracy --- and they work for seeds
November 19, 2015

pigeon training environment

“Pigeons do just as well as humans in categorizing digitized slides and mammograms of benign and malignant human breast tissue,” said Richard Levenson, professor of pathology and laboratory medicine at UC Davis Health System and lead author of a new open-access study in PLoS One by researchers at the University of California, Davis and The University of Iowa.

“The pigeons were able to generalize what they had… read more

A molecular light-driven nanosubmarine

Potential medical and other uses
November 16, 2015

Rice University scientists have created light-driven, single-molecule submersibles that contain just 244 atoms (credit: Loïc Samuel/Rice University)

The Rice University lab of chemist James Tour has created single-molecule, 244-atom submersibles with motors powered by ultraviolet light, as they reported this month in the American Chemical Society journal Nano Letters.

With each full revolution, the motor’s tail-like propeller moves the sub forward 18 nanometers, but with the motors running at more than a million RPM, that translates into almost 1 inch per second —… read more

‘Super natural killer cells’ destroy cancer in lymph nodes to halt metastasis

November 16, 2015

Nanoscale liposomes (orange) with TRAIL protein (green) attach to the surface of white blood cells and bump into cancer cells (brown) and program them to die (credit: Cornell University)

Cornell biomedical engineers have developed specialized white blood cells they call “super natural killer cells” that seek out cancer cells in lymph nodes with only one purpose: to destroy them, halting the onset of cancer tumor cell metastasis.

“We want to see lymph-node metastasis become a thing of the past,” said Michael R. King, the Daljit S. and Elaine Sarkaria Professor of Biomedical Engineering and senior author of a… read more

Beyond telomerase: another enzyme discovered critical to maintaining telomere length

New discovery expected to speed understanding of short-telomere-related diseases and cancer
November 13, 2015

Telomeres glow at the ends of chromosomes (credit: Hesed Padilla-Nash and Thomas Ried of the NIH)

Johns Hopkins researchers report they have uncovered the role of an another enzyme crucial to telomere length in addition to the enzyme telomerase, discovered in 1984.

The researchers say the new test they used to find the enzyme should speed discovery of other proteins and processes that determine telomere length. Shortened telomeres have been implicated in aging and in diseases as diverse as lung and… read more

Multi-layer nanoparticles glow when exposed to invisible near-infrared light

Emit light for bioimaging, solar energy, and currency security
November 11, 2015

An artist's rendering shows the layers of a new, onion-like nanoparticle whose specially crafted layers enable it to efficiently convert invisible near-infrared light to higher energy blue and UV light. (credit: Kaiheng Wei (Davidwei_loga@foxmail.com))

A new onion-like nanoparticle developed at the State University of New York University at Buffalo could open new frontiers in biomaging, solar-energy harvesting, and light-based security techniques.

The particle’s innovation lies in its layers: a coating of organic dye, a neodymium-containing shell, and a core that incorporates ytterbium and thulium. Together, these strata convert invisible near-infrared light to higher energy blue and UV light with record-high efficiency.… read more

New ‘tricorder’ technology might be able to ‘hear’ tumors

November 9, 2015

packaged CMUT-ft

Stanford electrical engineers have developed an enhancement of technology intended to safely find buried plastic explosives and spot fast-growing tumors, using a combination of microwaves and ultrasound to develop a detector similar to the legendary Star Trek tricorder.

The work, led by Assistant Professor Amin Arbabian and Research Professor Pierre Khuri-Yakub, grows out of DARPA research designed to detect buried plastic… read more

3D-printed microchannels deliver oxygen, nutrients from artery to tissue implant

Solves one of the biggest challenges in regenerative medicine: keeping implant tissues alive during growth in a lab
November 6, 2015

A miniature 3D-printed network of microchannels designed to link up an artery to a tissue implant to ensure blood flow of oxygen and nutrients. Flow rate at the inlet is equal to 0.12 mL/min. (credit: Renganaden Sooppan et al./Tissue Engineering Part C: Methods)

Scientists have designed an innovative structure containing an intricate microchannel network of simulated blood vessels that solves one of the biggest challenges in regenerative medicine: How to deliver oxygen and nutrients to all cells in an artificial organ or tissue implant that takes days or weeks to grow in the lab prior to surgery.

The new study was performed by a research team led by Jordan Miller, assistant professor… read more

A new 3-​​D printing method for creating patient-​​specific medical devices

Especially valuable for creating catheters for prema­ture babies
November 4, 2015

Preemie (credit: March of Dimes)

Northeastern University engineers have devel­oped a 3-D printing process that uses mag­netic fields to shape com­posite materials (mixes of plas­tics and ceramics) into patient-specific biomedical devices, such as catheters.

The devices are intended to be stronger and lighter than cur­rent models and the cus­tomized design could ensure an appro­priate fit, said Ran­dall Erb, assis­tant pro­fessor in the Depart­ment of Mechan­ical and Indus­trial Engi­neering.

The magnetic field… read more

Just one junk-food snack triggers signals of metabolic syndrome

Metabolic syndrome is associated with the risk of developing cardiovascular disease and diabetes
November 3, 2015

(credit: iStock)

Just one high-calorie milkshake was enough to make metabolic syndrome worse for some people. And overindulgence in just a single meal or snack (especially junk food) is enough to trigger the beginnings of metabolic syndrome, which is associated with the risk of developing cardiovascular disease and diabetes (obesity around the waist and trunk is the main sign).

That finding… read more

Single-agent phototherapy system diagnoses and kills cancer cells

November 2, 2015

Phototherapy-System ft

Researchers at Oregon State University have announced a new single-agent phototherapy (light-based) approach to combating cancer, using a single chemical compound (SiNc-PNP), for both diagnosis and treatment.

The compound makes cancer cells glow when exposed to near-infrared light so a surgeon can identify the cancer. The compound includes a copolymer called PEG-PCL as the biodegradable carrier. The carrier causes the silicon naphthalocyanine to accumulate selectively in cancer… read more

close and return to Home