Recently Added Most commented

Page 1 of 1,16912345678910last

How to grow a functional 3-D mini-brain for 25 cents

An easy-to-make 3-D testbed for biomedical research such as drug testing, testing neural tissue transplants, or experimenting with how stem cells work
October 2, 2015

A bioengineering team at Brown University has grown 3-D “mini-brains” of neurons and supporting cells that form networks and are electrically active. This reconstruction of confocal images of a 21 day-in-vitro 3D cortical neural spheroid shows β-III-butulin+ neurons in red, GFAP+ astrocytes in green, and DAPI-stained nuclei in blue. (credit: Hoffman-Kim lab/Brown University)

Brown University scientists have developed a “mini-brain” — an accessible method for making a working sphere of central nervous system tissue and providing an inexpensive, easy-to-make 3-D testbed for biomedical research such as drug testing, testing neural tissue transplants, or experimenting with how stem cells work. (No, they don’t think. Yet.)

Mini-brains (cortical neural spheroids) produce electrical signals and form their own synapses. “We think of this… read more

Vertical ‘light antennas’ grown from organic semiconductor crystals

Could absorb light from all directions, improving solar cells and photosensors
October 2, 2015

In full bloom: A scanning electron microscopy image produced by Jessica Wang of a vertical tetraanaline semiconductor crystal (credit: Jessica Wang)

Materials scientists from the California NanoSystems Institute at UCLA have discovered a way to make organic (carbon-based) semiconductors more powerful and efficient by creating “light antennas.” The thin, pole-like devices could absorb light from all directions, an improvement over today’s wide, flat panels that can only absorb light from one surface.

The breakthrough was in creating an improved structure for one type of organic semiconductor: a building… read more

Method to replace silicon with carbon nanotubes developed by IBM Research

Could work down to the 1.8 nanometer node in the future
October 2, 2015

Schematic of a set of molybdenum end-contacted nanotube transistors (Qing Cao et al./Science)

IBM Research has announced a “major engineering breakthrough” that could lead to carbon nanotubes replacing silicon transistors in future computing technologies.

As transistors shrink in size, electrical resistance increases within the contacts, which impedes performance. So IBM researchers invented a metallurgical process similar to microscopic welding that chemically binds the contact’s metal (molybdenum) atoms to the carbon atoms at the ends of nanotubes.

The new method promises… read more

Study of protein folds adds to evidence that viruses are alive and ancient

Scientists estimate there are more than a million viral species, but less than 4,900 viruses have been identified and sequenced
October 1, 2015


Viruses are actually living entities that share a long evolutionary history with cells, researchers report in a study that traces viral evolution back to a time when neither viruses nor cells existed in the forms recognized today.

The new findings appear in an open-access paper in the journal Science Advances.

Some scientists have argued that viruses are nonliving entities, bits of DNA and RNA shed by… read more

New test detects almost all viruses that infect people, animals

Additional research needed to validate the test accuracy
October 1, 2015

A new test developed at Washington University School of Medicine in St. Louis can detect virtually any virus that infects people and animals, including the Ebola virus (above). (credit: National Institute of Allergy and Infectious Diseases)

A new test that detects virtually any virus that infects people and animals has been developed at Washington University School of Medicine in St. Louis.

Current tests aren’t sensitive enough to detect low virus levels or are limited to detecting only those viruses suspected of being responsible for a patient’s illness.

“With this test, you don’t have to know what you’re looking for,” said the study’s… read more

Invisibility cloak may enhance efficiency of solar cells

October 1, 2015

A special invisibility cloak (right) guides sunlight past the contacts for current removal to the active surface area of the solar cell. (credit: Graphics: Martin Schumann, KIT)

A new approach to increasing solar-cell panel efficiency using an “invisibility cloak” has been developed by scientists at Karlsruhe Institute of Technology (KIT) in Germany.

Up to one tenth of the surface area of solar cells is typically covered by “contact fingers” that extract current generated by solar cells. The fingers block some of the light from the active area of the solar cell, decreasing cell efficiency. By guiding… read more

NIH and Kavli Foundation invest $185 million for BRAIN Initiative research

New round of projects for visualizing the brain in action
October 1, 2015

Scientists funded by the NIH BRAIN Initiative hope to diagram all of the circuits in the brain. One group will attempt to identify all of the connections among the retina’s ganglion cells (red), which transmit visual information from bipolar cells (green) and photoreceptors (purple) to the brain. (credit: Josh Morgan, Ph.D. and Rachel Wong, Ph.D./University of Washington)

The National Institutes of Health and the Kavli Foundation separately announced today (Oct. 1, 2015) commitments totaling $185 million in new funds supporting the BRAIN Initiative* — research aimed at deepening our understanding of the brain and brain-related disorders, such as traumatic brain injuries (TBI), Alzheimer’s disease, and Parkinson’s disease.

The NIH announced today its second wave of grants to support the goals of the Brain Researchread more

A promising new 2-D semiconductor material

Berkeley Lab researchers produce first ultrathin sheets of perovskite hybrids
September 30, 2015

Ultrathin sheets of a new 2-D hybrid perovskite are square-shaped and relatively large in area, properties that should facilitate their integration into future electronic devices. (credit: Peidong Yang, Berkeley Lab)

The first atomically thin 2D sheets of organic-inorganic hybrid perovskites have been created by Lawrence Berkeley National Laboratory (Berkeley Lab) researchers, adding to the growing list of two-dimensional semiconductors, such as graphene, boron nitride, and molybdenum disulfide, whose unique electronic properties make them potential successors to silicon in future devices.

However, unlike the other contenders, which are covalent semiconductors,… read more

New prosthesis bypasses brain damage by re-encoding memories

Aims to help people living with memory loss
September 30, 2015

CA 1 pattern ft

A brain prosthesis designed to help individuals suffering from memory loss has been developed by researchers at USC and Wake Forest Baptist Medical Center.

The prosthesis, which uses a small array of electrodes implanted into the brain, has performed well in laboratory testing in animals and is currently being evaluated in human patients.

The device builds on decades of research by Ted Bergerread more

‘Designless’ nanoscale logic circuits resemble Darwinian evolution and neural networks

September 30, 2015

Schematic of a nanoparticle network (about 200 nanometres in diameter). By applying electrical signals at the electrodes (yellow), and using artificial evolution, this disordered network can be configured into useful electronic circuits. (credit: University of Twente)

Researchers at the University of Twente in The Netherlands have designed and demonstrated working electronic logic circuits produced using methods that resemble Darwinian evolution and neural networks like the human brain.

In a radical “designless” approach, the researchers used a 200-nanometer-wide cluster of 20-nanometer gold nanoparticles. They applied a series of voltages to eight electrodes and determined the resulting set of 16 different two-input Boolean logic gates.… read more

Living implants

September 29, 2015

Development of a CB[8]-addressable bacterial strain (credit: Shrikrishnan Sankaran et al./ACS Nano)

A method for merging bacteria in human cells as “living implants” has been developed by University of Twente researchers. The implants could include stents equipped with bacteria on which endothelial cells (cells that form the lining of blood vessels) can grow, or bacteria that can release medicines in specific parts of the body.

They achieved this by supramolecular assembly, modifying the DNA of E. coli bacteria in such a… read more

A biomimetic dental prosthesis

September 29, 2015

Cross section of the artificial tooth under an electron microscope (false colour): Ceramic platelets in the enamel are orientated vertically. In the dentin, they are aligned horizontally. (credit: Hortense Le Ferrand/ETH Zürich)

A new procedure that can mimic the complex fine structure of biological composite materials, such as teeth or seashells, has been developed by ETH Zurich researchers. It could allow for creating synthetic materials that are as hard and tough as their natural counterparts.

The secret of these hard natural biomaterials is in their unique fine structure: they are composed of different layers in which numerous micro-platelets are… read more

Self-assembling material could lead to artificial arteries

September 29, 2015

Illustration showing a capillary created from biomaterials (credit: QMUL)

Researchers at Queen Mary University of London (QMUL) have developed a new bioinspired process using self-assembling organic molecules that can develop into complex tubular tissue-like structures. The process could lead to creating synthetic tissues that emulate veins, arteries, or even the blood-brain barrier, and that exhibit dynamic behaviors found in biological tissues like growth, morphogenesis, and healing.

The process uses solutions of peptide and protein… read more

First optical ‘rectenna’ converts light to DC current

As an array of billions of carbon nanotubes, they could efficiently capture solar energy
September 28, 2015

optical rectenna ft

Using nanometer-scale components, Georgia Institute of Technology researchers have demonstrated the first optical rectenna, a device that combines the functions of an antenna and a rectifier diode to convert light directly into DC current.

Based on multiwall carbon nanotubes and tiny rectifiers fabricated onto them, the optical rectennas could provide a new technology for energy harvesters, including photodetectors that would operate without the need for… read more

Ultrafast lasers enable 3-D micropatterning of biocompatible hydrogels

Allows for high-resolution and scalability for engineering tissue scaffolds and implants
September 28, 2015

Illustration of laser-based micropatterning of silk hydrogels. The transparent gels enable the laser's photons to be absorbed more than 10 times deeper than with other materials, without damaging the cells surrounding the "Tufts" pattern. (credit: M.B. A)

Tufts University biomedical engineers have developed low-energy, ultrafast laser technology for micropatterning high-resolution, 3-D structures in silk-protein hydrogels.

Micropatterning is used to bring oxygen and nutrients to rapidly proliferating cells in an engineered tissue scaffold. The goal is “to controllably guide cell growth and create an artificial vasculature (blood vessel system) within an already densely seeded silk hydrogel,” said Fiorenzo G. Omenetto, Ph.D., senior author… read more

Page 1 of 1,16912345678910last
close and return to Home