Recently Added Most commented

Page 1 of 1,15012345678910last

Light-emitting, transparent flexible paper developed in China

New environmentally safe paper could lead to light, flexible portable and wearable displays
May 24, 2015

A new, environmentally-friendly paper that glows could lead to sustainable, roll-up electronics (credit: American Chemical Society)

The first light-emitting, transparent, flexible paper made from environmentally friendly materials has been developed by scientists at Sichuan University in China, the scientists report in the journal ACS Applied Materials & Interfaces.

Most current flexible electronics paper designs rely on petroleum-based plastics and toxic materials.

The researchers developed a thin, clear nanocellulose paper made from wood flour and infused it with biocompatible quantum dots — tiny semiconducting crystals… read more

Printing low-cost, flexible radio-frequency antennas with graphene ink

Graphene can now be printed on materials like paper and plastic to create ubiquitous uses such as in RFID tags, wireless sensors, and wearable electronics
May 24, 2015

graphene antenna ft

The first low-cost, flexible, environmentally friendly radio-frequency antenna using compressed graphene ink has been printed by researchers from the University of Manchester and BGT Materials Limited. Potential uses of the new process include radio-frequency identification (RFID) tags, wireless sensors, wearable electronics, and printing on materials like paper and plastic.

Commercial RFID tags are currently made from metals like silver (very expensive) or aluminum or copper (both prone… read more

Robots master skills with ‘deep learning’ technique

UC Berkeley researchers' new algorithms enable robots to learn motor tasks by trial and error
May 22, 2015

Robot learns to put a cap on a bottle by trial and error (credit: UC Berkeley)

UC Berkeley researchers have developed new algorithms that enable robots to learn motor tasks by trial and error, using a process that more closely approximates the way humans learn.

They demonstrated their technique, a type of reinforcement learning, by having a robot complete various tasks — putting a clothes hanger on a rack, assembling a toy plane, screwing a cap on a water bottle, and more — without pre-programmed… read more

Robotic arm precisely controlled by thought

New neuroprosthetic implant captures intent to move, not the movement directly
May 22, 2015

(Credit: Spencer Kellis and Christian Klaes /Caltech)

Paralyzed from the neck down, Erik G. Sorto now can smoothly move a robotic arm just by thinking about it, thanks to a clinical collaboration between Caltech, Keck Medicine of USC and Rancho Los Amigos National Rehabilitation Center,

Previous neural prosthetic devices, such as Braingate, were implanted in the motor cortex, resulting in delayed, jerky movements. The new device was implanted in the posterior parietal cortex (PPC),… read more

Tunable liquid-metal antennas

May extend frequency ranges for mobile devices
May 21, 2015

This image shows the antenna, feed, and reservoir (credit: Jacob Adams)

Using electrochemistry, North Carolina State University (NCSU) researchers have created a reconfigurable, voltage-controlled liquid metal antenna that may play a role in future mobile devices and the coming Internet of Things.

By placing a positive or negative electrical voltage across the interface between the liquid metal and an electrolyte, they found that they could cause the liquid metal to spread (flow into a capillary) or contract, changing… read more

How to make continuous rolls of graphene for volume production

May 21, 2015

graphene process ft

A new graphene roll-to-roll continuous manufacturing process developed by MIT and University of Michigan researchers could finally take wonder-material graphene out of the lab and into practical commercial products.

The new process is an adaptation of a chemical vapor deposition method widely used to make graphene, using a small vacuum chamber into which a vapor containing carbon reacts on a horizontal substrate, such as a copper foil.… read more

New technology could fundamentally improve future wireless communications

Could increase data rates and network capacity, reduce power consumption, create cheaper devices, and enable global roaming
May 21, 2015

Novel full-duplex transceiver in the anechoic chamber (Credit: Sam Duckerin)

A new electronics technique that could allow a radio device to transmit and receive on the same channel at the same time (“full duplex,” or simultaneous, two-way transmission) has been developed by researchers at the University of Bristol’s Communication Systems and Networks research group. The technique can estimate and cancel out the interference from a device’s own transmission.

Today’s cell phones and other communication devices use twice as much of the radio… read more

NASA new CubeSat concept for planetary exploration

Tiny satellites to venture out beyond the low-earth-orbit limit
May 20, 2015

Technologist Jaime Esper and his team are planning to test the stability of a prototype entry vehicle —the Micro-Reentry Capsule (MIRCA) — this summer during a high-altitude balloon mission from Ft. Sumner, New Mexico. (Credits: NASA/Goddard)

Jaime Esper, a technologist at NASA’s Goddard Space Flight Center has developed a CubeSat concept that would allow scientists to use less-expensive cubesat (tiny-satellite) technology to observe physical phenomena beyond the current low-Earth-orbit limit.

The CubeSat Application for Planetary Entry Missions (CAPE) concept involves a service module that would propel the spacecraft to its  target and a separate planetary entry probe… read more

Will robot pets replace the real thing?

May 20, 2015

Sony - A2

University of Melbourne animal welfare researcher Jean-Loup Rault, PhD says pets will soon become a luxury in an overpopulated, high-density world and the future may lie in robot pets that mimic the real thing.

“It might sound surreal for us to have robotic or virtual pets, but it could be totally normal for the next generation,” Rault said. “If 10 billion human beings live on the… read more

Nature inspires first artificial molecular pump

Simple design mimics pumping mechanism of life-sustaining proteins found in living cells
May 20, 2015

Stoddart-molecular-pump-ft

Northwestern University scientists have developed the first entirely artificial molecular pump, in which molecules pump other molecules. The pump might one day be used to power other molecular machines, such as artificial muscles.

The new machine mimics the pumping mechanism of proteins that move small molecules around living cells to metabolize and store energy from food. The artificial pump draws power from chemical reactions, driving molecules step-by-step… read more

How to print stronger, bigger, conductive 3-D graphene structures for tissue engineering

Allows for graphene-printed scaffolds for regenerative medicine and other medical and electronic applications
May 20, 2015

3DG inks produced through elastomer solution-ft

Northwestern University researchers have developed a way to print large, robust 3-D structures with graphene-based ink.

The new method could allow for using graphene-printed scaffolds for regenerative medicine and other medical and electronic  applications.

“People have tried to print graphene before,” said Ramille Shah, assistant professor of materials science and engineering at the McCormick Schoolread more

‘Natural’ sounds improve mood and productivity, study finds

May 19, 2015

(credit: iStock)

Playing natural sounds such as flowing water in offices could boost worker moods and improve cognitive abilities in addition to providing speech privacy, according to a new study from researchers at Rensselaer Polytechnic Institute.

An increasing number of modern open-plan offices employ sound masking systems such as “white noise” that raise the background sound of a room so that speech is rendered unintelligible beyond a certain distance and distractions… read more

Wearables and electric vehicles may get boost from boron-infused graphene

May 19, 2015

Rice University scientists made this supercapacitor with interlocked "fingers" using a laser and writing the pattern into a boron-infused sheet of polyimide. The device may be suitable for flexible, wearable electronics. (Credit: Tour Group/Rice University)

Infusing the polymer in a laser-induced graphene supercapacitor (used to rapidly store and discharge electricity) with boric acid quadrupled the supercapacitor’s ability to store an electrical charge while greatly boosting its energy density (energy per unit volume), Rice University researchers have found.

The Rice lab of chemist James Tour uses commercial lasers to create thin, flexible supercapacitors by burning patterns into common polymers. The laser burns… read more

The geometry of immune system cloaking

MIT scientists find the optimal size and shape to cloak implantable devices and avoid immune rejection
May 19, 2015

The sugar polymers that make up the spheres in this image are designed to package and protect specially engineered cells that work to produce drugs and fight disease. While on-site, they must remain undetected by the body’s natural defense system. However, the reddish markers on the spheres’ surfaces indicate that immune cells (blue/green) have discovered these invaders and begun to block them off from the rest of the body. Further experiments with the spheres’ geometry and chemistry will lead to better invisibility cloaking and longer lasting protection for these cell-based factories. (Credit: Courtesy of the researchers)

A team of MIT researchers has come up with a way to reduce immune-system rejection of implantable devices used for for drug delivery, tissue engineering, or sensing.

Previous research found that smooth surfaces, especially spheres, are better — but counterintuively, larger spheres actually work better at reducing scar tissue, the researchers discovered.

“We were surprised by how much the size and shape of an implant can… read more

New graphene-like two-dimensional material could improve energy storage

May 18, 2015

Top view , illustrating the porous and layered structure of a highly conductive powder (Ni3(HITP)2), precursor to a new, tunable graphene analog. (Credit: Image courtesy of Mircea Dinc?, Massachusetts Institute of Technology)

MIT and Harvard University researchers have created a graphene-like electrically conductive. porous, layered material as possible new tool for storing energy and investigating the physics of unusual materials.

They synthesized the material using an organic molecule called HITP and nickel ions, forming a new compound: Ni3(HITP)2.

The new porous material is a crystalline, structurally tunable electrical conductor with a high surface area — features… read more

Page 1 of 1,15012345678910last
close and return to Home