science + technology news

Page 1 of 21912345678910last

There’s no known upper limit to human longevity, study suggests

New high-precision database of Italians shows risk of death leveling off at age 105
July 2, 2018

Chiyo Miyako of Japan is the world's oldest verified living person as of June 29, 2018, according to the Gerontology Research Group. She credits eating eel, drinking red wine, and never smoking for her longevity. (credit:  Medical Review Co., Ltd.)

Human death risk increases exponentially from 65 up to about age 80. At that point, the range of risks starts to increase. But by age 105, the death risk actually levels off — suggesting there’s no known upper limit for human lifespan.*

That’s the conclusion of a controversial study by an international team of scientists, published Thursday, June 28 in the journal Science.

“The increasing number of exceptionally… read more

roundup | AI powers cars, photos, phones, and people

June 8, 2018

(credit: Berkeley Deep Drive)

Huge self-driving-car video dataset may help reduce accidents

Berkeley Deep Drive, the largest-ever self-driving car dataset, has been released by BDD Industry Consortium for free public download. It features 100,000 HD videos on cars and labeled objects, with GPS and other data — 800 times larger than Baidu’s Apollo dataset. The goal: apply computer vision research — including deep reinforcement learning for object tracking — to… read more

New noninvasive technique could be alternative to laser eye surgery

Uses a low-powered, ultrafast laser to alter biochemical and biomechanical tissue properties without causing cellular damage or tissue disruption
May 31, 2018

correcting myopia ft

Columbia Engineering researcher Sinisa Vukelic, Ph.D., has developed a new non-invasive approach for permanently correcting myopia (nearsightedness), replacing glasses and invasive corneal refractive surgery.* The non-surgical method uses a “femtosecond oscillator” — an ultrafast laser that delivers pulses of very low energy at high repetition rate to modify the tissue’s shape.

The method has fewer side effects and limitations than those seen in… read more

First 3D-printed human corneas

Using donated stem cells, bio-ink formed the shape of a specific human cornea in less than 10 minutes; could ensure an unlimited supply of corneas in the future
May 31, 2018

3D-printing a human cornea (credit: Newcastle University)

Scientists at Newcastle University have created a proof-of-concept process to achieve the first 3D-printed human corneas (the cornea, the outermost layer of the human eye, has an important role in focusing vision).*

Stem cells (human corneal stromal cells) from a healthy donor’s cornea were mixed together with alginate and collagen** to create a “bio-ink” solution. Using a simple low-cost 3D bio-printer, the bio-ink was successfully… read more

Advanced brain organoid could model strokes, screen drugs

Functional blood brain barrier allows for discovering and testing new drugs that can cross over into the brain
May 29, 2018

stroke damage to blood brain barrier ft

Wake Forest Institute for Regenerative Medicine (WFIRM) scientists have developed a 3-D brain organoid (tiny artifical organ) that could have potential applications in drug discovery and disease modeling.

The scientists say this is the first engineered tissue-equivalent to closely resemble normal human brain anatomy — containing all six major cell types found in normal organs, including neurons and immune cells.

The advanced 3-D organoids promote the formation of… read more

Augmented-reality system lets doctors see medical images projected on patients’ skin

April 23, 2018

Projected medical image (credit: University of Alberta)

New technology is bringing the power of augmented reality into clinical practice. The system, called ProjectDR, shows clinicians 3D medical images such as CT scans and MRI data, projected directly on a patient’s skin.

The technology uses motion capture, similar to how it’s done in movies. Infrared cameras track invisible (to human vision) markers on the patient’s body. That allows the system to track the orientation of… read more

How deep learning is about to transform biomedical science

“In silico labeling” aims to decode the terabytes of data per day generated in bio research labs
April 18, 2018

human induced pluripotent stem cell neurons ft

Researchers at Google, Harvard University, and Gladstone Institutes have developed and tested new deep-learning algorithms that can identify details in terabytes of bioimages, replacing slow, less-accurate manual labeling methods.

Deep learning is a type of machine learning that can analyze data, recognize patterns, and make predictions. A new deep-learning approach to biological images, which the researchers call “in silico labeling” (ISL), can automatically find and predict features in images of “unlabeled”… read more

round-up | Five important biomedical technology breakthroughs

Ranging from AI-enhanced medical imaging to nanometer-scale MRI and a skin-implantable biosensor
March 30, 2018

PrintrBot Simple Metal modified with the LVE for FRESH printing. (credit: Adam Feinberg/HardwareX)

Printing your own bioprinter

Now you can build your own low-cost 3-D bioprinter by modifying a standard commercial desktop 3-D printer for under $500 — thanks to an open-source “LVE 3-D” design developed by Carnegie Mellon University (CMU) researchers. CMU provides detailed instructional videos.

You can print artificial human tissue scaffolds on a larger scale (entire human heart) and at higher resolution and quality, the researchers… read more

DARPA-funded ‘body on a chip’ microfluidic system could revolutionize drug evaluation

Linked by microfluidic channels, compact system replicates interactions of 2 million human-tissue cells in 10 “organs on chips,” replacing animal testing
March 19, 2018

To measure the effects of drugs on different parts of the body, this microfluidic platform can connect engineered tissues from up to 10 artificial organs, allowing researchers to accurately replicate human-organ interactions for weeks at a time. (credit: Felice Frankel)

MIT bioengineers have developed a new microfluidic platform technology that could be used to evaluate new drugs and detect possible side effects before the drugs are tested in humans.

The microfluidic platform can connect 3D tissues from up to 10 organs. Replacing animal testing, it can accurately replicate human-organ interactions for weeks at a time and can allow for measuring the effects of drugs on different parts of the… read more

round-up | Two new wearable sensors may replace traditional medical diagnostic devices

Breakthrough technologies presented at AAAS annual meeting Feb. 17, 2018
February 21, 2018

throad sensor ft.

Throat-motion sensor monitors stroke effects more effectively

A radical new type of stretchable, wearable sensor that measures vocal-cord movements could be a “game changer” for stroke rehabilitation, according to Northwestern University scientists. The sensors can also measure swallowing ability (which may be affected by stroke), heart function, muscle activity, and sleep quality. Developed in the lab of engineering professor John A.

read more

Are you a cyborg?

How to generate electricity from your body, bioprint a brain, and “resleeve your stack.”
February 14, 2018

Vertebral chip (credit: Netflix)

Bioprinting a brain

A new bioprinting technique combines cryogenics (freezing) and 3D printing to create geometrical structures that are as soft (and complex) as the most delicate body tissues — mimicking the mechanical properties of organs such as the brain and lungs.

The idea: “Seed” porous scaffolds that can act as a template for tissue regeneration (from neuronal cells, for example), where damaged tissues are encouraged… read more

Remote-controlled DNA nanorobots could lead to the first nanorobotic production factory

"Five orders of magnitude [hundreds of thousands times] faster than previously reported DNA-driven robotic systems"
January 19, 2018

Robotic DNA arm ft

By powering a self-assembling DNA nanorobotic arm with electric fields, German scientists have achieved precise nanoscale movement that is at least five orders of magnitude (hundreds of thousands times) faster than previously reported DNA-driven robotic systems, they suggest today (Jan. 19) in the journal Science.

DNA origami has emerged as a powerful tool to build precise structures. But now, “Kopperger et al. make an impressive stride in this direction… read more

Brainwave ‘mirroring’ neurotechnology improves post-traumatic stress symptoms

Brain "listens" to itself, re-balances its brainwave activity between hemispheres
January 3, 2018

HIRREM process infographic ft

You are relaxing comfortably, eyes closed, with non-invasive sensors attached to your scalp that are picking up signals from various areas of your brain. The signals are converted by a computer to audio tones that you can hear on earbuds. Over several sessions, the different frequencies (pitches) of the tones associated with the two hemispheres of the brain create a mirror for your brainwave activity, helping your brain reset itselfread more

A new low-cost, simple way to measure medical vital signs with radio waves

December 15, 2017

A radio frequency identification tag (credit: Cornell)

Replacing devices based on 19th-century technology* and still in use, Cornell University engineers have developed a simple method for gathering blood pressure, heart rate, and breath rate from multiple patients simultaneously. It uses low-power radio-frequency signals and low-cost microchip radio-frequency identification (RFID) “tags” — similar to the ubiquitous anti-theft tags used in department stores.

The RFID tags measure internal body motion, such as a heart as it beats… read more

3D-printing biocompatible living bacteria

Applications include skin transplants and nanofilters that break down toxic substances
December 8, 2017

Printing Bacteria ft

Researchers at ETH Zurich university have developed a technique for 3D-printing biocompatible living bacteria for the first time — making it possible to produce produce high-purity cellulose for biomedical applications and nanofilters that can break down toxic substances (in drinking water, for example) or for use in disastrous oil spills, for example.

The technique, called “Flink” (“functional living ink”) allows for printing mini biochemical factories with properties… read more

Page 1 of 21912345678910last
close and return to Home