science + technology news

Page 1 of 21912345678910last

Brainwave ‘mirroring’ neurotechnology improves post-traumatic stress symptoms

Brain "listens" to itself, re-balances its brainwave activity between hemispheres
January 3, 2018

HIRREM process infographic ft

You are relaxing comfortably, eyes closed, with non-invasive sensors attached to your scalp that are picking up signals from various areas of your brain. The signals are converted by a computer to audio tones that you can hear on earbuds. Over several sessions, the different frequencies (pitches) of the tones associated with the two hemispheres of the brain create a mirror for your brainwave activity, helping your brain reset itselfread more

A new low-cost, simple way to measure medical vital signs with radio waves

December 15, 2017

A radio frequency identification tag (credit: Cornell)

Replacing devices based on 19th-century technology* and still in use, Cornell University engineers have developed a simple method for gathering blood pressure, heart rate, and breath rate from multiple patients simultaneously. It uses low-power radio-frequency signals and low-cost microchip radio-frequency identification (RFID) “tags” — similar to the ubiquitous anti-theft tags used in department stores.

The RFID tags measure internal body motion, such as a heart as it beats… read more

3D-printing biocompatible living bacteria

Applications include skin transplants and nanofilters that break down toxic substances
December 8, 2017

Printing Bacteria ft

Researchers at ETH Zurich university have developed a technique for 3D-printing biocompatible living bacteria for the first time — making it possible to produce produce high-purity cellulose for biomedical applications and nanofilters that can break down toxic substances (in drinking water, for example) or for use in disastrous oil spills, for example.

The technique, called “Flink” (“functional living ink”) allows for printing mini biochemical factories with properties… read more

Using microrobots to diagnose and treat illness in remote areas of the body

November 24, 2017

Spirulina algae coated with magnetic particles to form a microrobot. Devices such as these could be developed to diagnose and treat illness in hard-to-reach parts of the body. (credit: Yan et al Science Robotics 2017)

Imagine a swarm of remote-controlled microrobots, a few micrometers in length (blood-vessel-sized), unleashed into your body to swim through your intestinal track or blood vessels, for example. Goal: to diagnose illness and treat it in hard-to-reach areas of the body.

An international team of researchers, led by the Chinese University of Hong Kong, is now experimenting with this idea (starting with rats) — using microscopic Spirulina algae coated… read more

3D ‘body-on-a-chip’ project aims to accelerate drug testing, reduce costs

Initial system uses micro-sized 3D liver, heart, and lung "organoids"
October 9, 2017

Scientists created miniature models of hearts, lungs, and livers and combined them into an integrated "body-on-a-chip" system, fed with nutrient-rich fluid to mimic blood (credit: Wake Forest Baptist Medical Center)

A team of scientists at Wake Forest Institute for Regenerative Medicine and nine other institutions has engineered miniature 3D human hearts, lungs, and livers to achieve more realistic testing of how the human body responds to new drugs.

The “body-on-a-chip” project, funded by the Defense Threat Reduction Agency, aims to help reduce the estimated $2 billion cost and 90 percent failure rate that pharmaceutical companies face… read more

A battery-free origami robot powered and controlled by external magnetic fields

September 22, 2017

Wirelessly powered and controlled magnetic folding robot arm can grasp and bend (credit: Wyss Institute at Harvard University)

Harvard University researchers have created a battery-free, folding robot “arm” with multiple “joints,” gripper “hand,” and actuator “muscles” — all powered and controlled wirelessly by an external resonant magnetic field.

The design is inspired by the traditional Japanese art of origami (used to transform a simple sheet of paper into complex, three-dimensional shapes through a specific pattern of folds, creases, and crimps). The prototype device is capable of complex,… read more

New system allows near-zero-power sensors to communicate data over long distances

Could make low-cost remote medical monitoring and the "internet of things" practical
September 18, 2017

A flexible epidermal medical-data patch prototype successfully transmitted information at up to 37500 bits per second across a 3,300-square-feet atrium. (credit: Dennis Wise/University of Washington)

University of Washington (UW) researchers have developed a low-cost, long-range data-communication system that could make it possible for medical sensors or billions of low-cost “internet of things” objects to connect via radio signals at long distances (up to 2.8 kilometers) and with 1000 times lower required power (9.25 microwatts in an experiment) compared to existing technologies.

“People have been talking about embedding connectivity into everyday objects … for… read more

Walking DNA nanorobot could deliver a drug to a precise location in your body

Future uses could include creating programmable drugs or delivering them when a specific signal is received in the bloodstream or cells
September 15, 2017

DNA nanorobot cargo carrier (credit: Ella Maru Studio)

Caltech scientists have developed a “cargo sorting” DNA nanorobot programmed to autonomously “walk” around a surface, pick up certain molecules, and drop them off in designated locations.

The research is described in a paper in the Friday, September 15, 2017 issue of Science.

The major advance in this study is “their methodology for designing simple DNA devices that work in parallel to solve nontrivial tasks,”… read more

Miniature MRI simulator chip could help diagnose and treat diseases in the body at sub-millimeter precision

September 13, 2017

Illustration of an ATOMS microchip localized within the gastrointestinal tract. The chip, which works on principles similar to those used in MRI machines, is embodied with the properties of nuclear spin. (credit: Ella Marushchenko for Caltech)

Caltech researchers have developed a “Fantastic Voyage” style prototype microchip that could one day be used in “smart pills” to diagnose and treat diseases when inserted into the human body.

Called ATOMS (addressable transmitters operated as magnetic spins), the microchips could one day monitor a patient’s gastrointestinal tract, blood, or brain, measuring factors that indicate a patient’s health — such as pH, temperature, pressure, and sugar concentrations — with… read more

These fast, low-cost medical technologies will replace ultrasound and X-rays for specific uses

September 8, 2017

Smartphone heart diagnosis (credit: Caltech)

A radical software invention by three Caltech engineers promises to allow your smartphone camera* to provide detailed information about a critical measure of your heart’s health: the “left ventricular ejection fraction” (LVEF) — the amount of blood in the heart that is pumped out to the blood system with each beat. This figure is used by physicians as a base for diagnostic and therapeutic decisions.

You’ll simply hold… read more

Flexible ‘electronic skin’ patch provides wearable health monitoring anywhere on the body

August 23, 2017

Mobile Application of the Soft Electronic Skin ft

A radical new electronic skin monitor developed by Korean and U.S. scientists tracks heart rate, respiration, muscle movement, acceleration, and electrical activity in the heart, muscles, eyes, and brain and wirelessly transmits it to a smartphone, allowing for continuous health monitoring.

KurzweilAI has covered a number of biomedical skin-monitoring devices. This new design is noteworthy because the soft, flexible self-adhesive patch (a soft silicone material about four centimeters or 1.5… read more

Drinking coffee associated with lower risk of death from all causes, study finds

July 17, 2017

(credit: iStock)

People who drink around three cups of coffee a day may live longer than non-coffee drinkers, a landmark study has found.

The findings — published in the journal Annals of Internal Medicine — come from the largest study of its kind, in which scientists analyzed data from more than half a million people across 10 European countries to explore the effect of coffee consumption on risk of mortality.… read more

Meditation, yoga, and tai chi can reverse damaging effects of stress, new study suggests

Even a two-minute brisk walk every half hour will work wonders
July 3, 2017

Tai chi (credit: iStock)

Mind-body interventions such as meditation, yoga*, and tai chi can reverse the molecular reactions in our DNA that cause ill-health and depression, according to a study by scientists at the universities of Coventry and Radboud.

When a person is exposed to a stressful event, their sympathetic nervous system (responsible for the “fight-or-flight” response) is triggered, which increases production of a molecule called nuclear factor kappa B (NF-kB). That molecule… read more

Common antioxidant could slow symptoms of aging in human skin

May 31, 2017

These cross-section images show three-dimensional human skin models made of living skin cells. Untreated model skin (left panel) shows a thinner dermis layer (black arrow) compared with model skin treated with the antioxidant methylene blue (right panel). A new study suggests that methylene blue could slow or reverse dermal thinning (a sign of aging) and a number of other symptoms of aging in human skin. (credit: Zheng-Mei Xiong/University of Maryland)

University of Maryland (UMD) researchers have found evidence that a common, inexpensive, and safe antioxidant chemical called methylene blue could slow the aging of human skin, based on tests in cultured human skin cells and simulated skin tissue.

“The effects we are seeing are not temporary. Methylene blue appears to make fundamental, long-term changes to skin cells,” said Kan Cao, senior author on the study and an associate… read more

3D-printed ‘bionic skin’ could give robots and prosthetics the sense of touch

Could also be printed directly on human skin for pulse monitoring or as a human-machine interface --- imagine a computer mouse built into your fingertip
May 26, 2017

A one-of-a-kind 3D printer built at the University of Minnesota can print touch sensors directly on a model hand. Credit: Shuang-Zhuang Guo and Michael McAlpine, University of Minnesota, "3D Printed Stretchable Tactile Sensors," Advanced Materials. 2017. (credit: Wiley-VCH Verlag GmbH & Co. KGaA. )

Engineering researchers at the University of Minnesota have developed a process for 3D-printing stretchable, flexible, and sensitive electronic sensory devices that could give robots or prosthetic hands — or even real skin — the ability to mechanically sense their environment.

One major use would be to give surgeons the ability to feel during minimally invasive surgeries instead of using cameras, or to increase the sensitivity of surgical… read more

Page 1 of 21912345678910last
close and return to Home