Nuclear clock accurate to .05 seconds in 14 billion years

March 14, 2012

A proposed new time-keeping system tied to the orbiting of a neutron around an atomic nucleus could have such unprecedented accuracy that it neither gains nor loses 1/20th of a second in 14 billion years — the age of the Universe.

Might this be useful to CERN in assuring more accurate measurements — for neutrino transmission times, for example?

“This is nearly 100 times more accurate [19 decimal places] than the best atomic clocks we have now,” says one of the researchers, Scientia Professor Victor Flambaum, who is Head of Theoretical Physics in the UNSW School of Physics.

“It would allow scientists to test fundamental physical theories at unprecedented levels of precision — and provide an unmatched tool for applied physics research.”

The exquisite accuracy of atomic clocks is widely used in applications ranging from GPS navigation systems and high-bandwidth data transfer to tests of fundamental physics and system synchronization in particle accelerators.

“Atomic clocks use the orbiting electrons of an atom as the clock pendulum. But we have shown that by using lasers to orient the electrons in a very specific way, one can use the orbiting neutron of an atomic nucleus as the clock pendulum, making a so-called nuclear clock with unparalleled accuracy.”

Because the neutron is held so tightly to the nucleus, its oscillation rate is almost completely unaffected by any external perturbations, unlike those of an atomic clock’s electrons, which are much more loosely bound.

Ref.: C. J. Campbell et al., Single-ion nuclear clock for metrology at the 19th decimal place, Physical Review Letters, 2012 (in press)