Pebbly rocks testify to old streambed on Mars

May 31, 2013
nasa_streambed

NASA’s Curiosity rover found evidence for an ancient, flowing stream on Mars at a few sites, including the rock outcrop pictured here, which the science team has named “Hottah” after Hottah Lake in Canada’s Northwest Territories (credit: NASA/JPL-Caltech/MSSS)

Detailed analysis and review have borne out┬áresearchers’ initial interpretation of pebble-containing slabs that NASA’s Mars rover Curiosity investigated last year: they are part of an ancient streambed.

The rocks are the first ever found on Mars that contain streambed gravels. The sizes and shapes of the gravels embedded in these conglomerate rocks — from the size of sand particles to the size of golf balls — enabled researchers to calculate the depth and speed of the water that once flowed at this location.

“We completed more rigorous quantification of the outcrops to characterize the size distribution and roundness of the pebbles and sand that make up these conglomerates,” said Rebecca Williams of the Planetary Science Institute, Tucson, Ariz., lead author of a report about them in the journal Science this week. “We ended up with a calculation in the same range as our initial estimate last fall. At a minimum, the stream was flowing at a speed equivalent to a walking pace — a meter, or three feet, per second — and it was ankle-deep to hip-deep.”

“Our analysis of the amount of rounding of the pebbles provided further information,” said Sanjeev Gupta of Imperial College, London, a co-author of the new report. “The rounding indicates sustained flow. It occurs as pebbles hit each other multiple times. This wasn’t a one-off flow. It was sustained, certainly more than weeks or months, though we can’t say exactly how long.”

The stream carried the gravels at least a few miles, or kilometers, the researchers estimated.

The atmosphere of modern Mars is too thin to make a sustained stream flow of water possible, though the planet holds large quantities of water ice. Several types of evidence have indicated that ancient Mars had diverse environments with liquid water. However, none but these rocks found by Curiosity could provide the type of stream flow information published this week. Curiosity’s images of conglomerate rocks indicate that atmospheric conditions at Gale Crater once enabled the flow of liquid water on the Martian surface.

During a two-year prime mission, researchers are using Curiosity’s 10 science instruments to assess the environmental history in Gale Crater on Mars, where the rover has found evidence of ancient environmental conditions favorable for microbial life.