Photoreceptor transplant restores vision in mice

April 20, 2012
Photoreceptor Cells

Transplanted photoreceptor cells (green) can integrate and make functional connections in the adult mouse retina (credit: UCL/Robin Ali)

Scientists from the UCL Institute of Ophthalmology have shown for the first time that transplanting light-sensitive photoreceptors into the eyes of visually impaired mice can restore their vision.

The research suggests that transplanting photoreceptors — light-sensitive nerve cells that line the back of the eye — could form the basis of a new treatment to restore sight in people with degenerative eye diseases.

Scientists injected cells from young healthy mice directly into the retinas of adult mice that lacked functional rod-photoreceptors. Loss of photoreceptors is the cause of blindness in many human eye diseases including age-related macular degeneration, retinitis pigmentosa, and diabetes-related blindness.

There are two types of photoreceptor in the eye: rods and cones. The cells transplanted were immature (or progenitor) rod-photoreceptor cells. Rod cells are especially important for seeing in the dark as they are extremely sensitive to even low levels of light.

Almost-normal rod vision achieved

After four to six weeks, the transplanted cells appeared to be functioning almost as well as normal rod-photoreceptor cells and had formed the connections needed to transmit visual information to the brain.

The researchers also tested the vision of the treated mice in a dimly lit maze. Those mice with newly transplanted rod cells were able to use a visual cue to quickly find a hidden platform in the maze whereas untreated mice were able to find the hidden platform only by chance after extensive exploration of the maze.

Professor Robin Ali at UCL Institute of Ophthalmology, who led the research, said: “We’ve shown for the first time that transplanted photoreceptor cells can integrate successfully with the existing retinal circuitry and truly improve vision. We’re hopeful that we will soon be able to replicate this success with photoreceptors derived from embryonic stem cells and eventually to develop human trials.

“Although there are many more steps before this approach will be available to patients, it could lead to treatments for thousands of people who have lost their sight through degenerative eye disorders. The findings also pave the way for techniques to repair the central nervous system as they demonstrate the brain’s amazing ability to connect with newly transplanted neurons.”

Cone vision next

Dr Rachael Pearson from UCL Institute of Ophthalmology and principal author, said: “We are now finding ways to improve the efficiency of cone photoreceptor transplantation and to increase the effectiveness of transplantation in very degenerate retina. We will probably need to do both in order to develop effective treatments for patients.”

The researchers demonstrated previously, in another study published in Nature, that it is possible to transplant photoreceptor cells into an adult mouse retina, provided the cells from the donor mouse are at a specific stage of development — when the retina is almost, but not fully, formed. In this study they optimized the rod transplantation procedure to increase the number of cells integrated into the recipient mice and so were able to restore vision.

Ref.: R. A. Pearson, et al., Restoration of vision after transplantation of photoreceptors, Nature, 2012, DOI:10.1038/nature10997