Rice scientists attach motor to single-molecule car

April 14, 2006 | Source: KurzweilAI

In follow-on work to last year’s groundbreaking invention of the world’s first single-molecule car, chemists at Rice University have produced the first motorized version of their nanocar.

Two motorized nanocars on a gold surface. The nanocar consists of a rigid chassis and four alkyne axles that spin freely and swivel independently of one another. The wheels are spherical molecules of carbon, hydrogen and boron called p-carborane.

Two motorized nanocars on a gold surface. The nanocar consists of a rigid chassis and four alkyne axles that spin freely and swivel independently of one another. The wheels are spherical molecules of carbon, hydrogen and boron called p-carborane.

“We want to construct things from the bottom up, one molecule at a time, in much the same way that biological cells use enzymes to assemble proteins and other supermolecules,” said lead researcher James M. Tour, the Chao Professor of Chemistry, professor of mechanical engineering and materials science and professor of computer science.

“Everything that’s produced through biology is built one molecule at a time. Nanocars and other synthetic transporters may prove to be a suitable alternative for bottom-up systems where biological methods aren’t practical.”

The motorized model of the nanocar is powered by light. Its rotating motor, a molecular framework that was developed by Ben L. Feringa at the University of Groningen in the Netherlands, was modified by Tour’s group so that it would attach in-line with the nanocar’s chassis. When light strikes the motor, it rotates in one direction, pushing the car along like a paddlewheel.

The car’s light-powered motor is attached mid-chassis. When struck by light, it rotates in one direction, pushing the car along like a paddlewheel.

The nanocar consists of a rigid chassis and four alkyne axles that spin freely and swivel independently of one another. The four buckyball wheels that were used in the original version of the nanocar drained energy from the motor and were replaced with spherical molecules of carbon, hydrogen and boron called p-carborane.

Source: Rice University news release