Organic matter detected on Mars

December 18, 2014

This self-portrait of NASA’s Mars rover Curiosity combines dozens of exposures taken by the rover’s Mars Hand Lens Imager on Feb. 3, 2013 plus three exposures taken May 10, 2013 to show two holes (in lower left quadrant) where Curiosity used its drill on the rock target “John Klein”. (Credit: NASA/JPL-Caltech/MSSS)

The team responsible for the Sample Analysis at Mars (SAM) instrument suite on NASA’s Curiosity rover has made the first definitive detection of organic molecules at Mars, but there’s not enough evidence to tell if the matter came from ancient Martian life or from a non-biological process, such as interplanetary dust or fragments of asteroids and comets.

The surface of Mars is currently inhospitable to life as we know it, but there is evidence that it once had a climate that could have supported life billions of years ago.

The organic molecules found by the team were in a drilled sample of the Sheepbed mudstone in Gale crater, the landing site for the Curiosity rover. Scientists think the crater was once the site of a lake billions of years ago, and rocks like mudstone formed from sediment in the lake. Moreover, this mudstone was found to contain 20 percent smectite clays. On Earth, such clays are known to provide high surface area and optimal interlayer sites for the concentration and preservation of organic compounds when rapidly deposited under reducing chemical conditions.

While the team can’t conclude that there was life at Gale crater, the discovery shows that the ancient environment offered a supply of reduced organic molecules for use as building blocks for life and an energy source for life. Curiosity’s earlier analysis of this same mudstone revealed that the environment offered water and chemical elements essential for life and a different chemical energy source.

“We think life began on Earth around 3.8 billion years ago, and our result shows that places on Mars had the same conditions at that time — liquid water, a warm environment, and organic matter,” said Caroline Freissinet of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “So if life emerged on Earth in these conditions, why not on Mars as well?” Freissinet is lead author of a paper on this research submitted to the Journal of Geophysical Research-Planets.

SAM’s three instruments are visible in this view taken before installation of its side panels: the tunable laser spectrometer (TLS) at lower left, the quadrupole mass spectrometer (QMS) at upper right, and the gas chromatograph (GC) at lower right. (Credit: NASA)

The organic molecules found by the team also have chlorine atoms, and include chlorobenzene and several dichloroalkanes, such as dichloroethane, dichloropropane and dichlorobutane. Chlorobenzene is the most abundant with concentrations between 150 and 300 parts-per-billion.

Chlorobenzene is not a naturally occurring compound on Earth. It is used in the manufacturing process for pesticides (insecticide DDT), herbicides, adhesives, paints and rubber. Dichloropropane is used as an industrial solvent to make paint strippers, varnishes and furniture finish removers, and is classified as a carcinogen.

It’s possible that these chlorine-containing organic molecules were present as such in the mudstone. However, according to the team, it’s more likely that a different suite of precursor organic molecules was in the mudstone, and that the chlorinated organics formed from reactions inside the SAM instrument as the sample was heated for analysis. Perchlorates (a chlorine atom bound to four oxygen atoms) are abundant on the surface of Mars. It’s possible that as the sample was heated, chlorine from perchlorate combined with fragments from precursor organic molecules in the mudstone to produce the chlorinated organic molecules detected by SAM.

NASA provided support for the development and operation of SAM. SAM-Gas Chromatograph was supported by funds from the French Space Agency (CNES). Individual team members were supported by the NASA Postdoctoral Program and the Mars Science Laboratory Participating Scientist Program. Data from these SAM experiments are archived in the Planetary Data System.

NASA Goddard | Daniel Glavin of NASA’s Goddard Space Flight Center discusses the discovery of organic matter on Mars and other recent results from the MSL Curiosity rover.