Printing nanomaterials with plasma on flexible surfaces and 3D objects

March 22, 2016

The nozzle firing a jet of carbon nanotubes with helium plasma off (left) and on (right). When the plasma is off, the density of carbon nanotubes is small. The plasma focuses the nanotubes onto the substrate with high density and good adhesion, at a temperature of only 40 degrees Celsius. (credit: NASA Ames Research Center)

Researchers at NASA Ames and Stanford Linear Accelerator Center have developed a new method that uses plasma to print nanomaterials onto a 3-D object or flexible surface, such as paper or cloth.

The technique could make it easier and cheaper to build devices like wearable chemical and biological sensors, integrated circuits, and flexible memory devices and batteries.

Some nanomaterials can be printed currently using aerosol printing techniques, but the material must be heated several hundreds of degrees to consolidate into a thin and smooth film. The extra step is impossible for printing on cloth or other materials that can burn, and means higher cost for the materials that can take the heat.

The plasma method skips this heating step and works at temperatures not much warmer than 40 degrees Celsius. “You can use it to deposit things on paper, plastic, cotton, or any kind of textile,” said Meyya Meyyappan of NASA Ames Research Center. “It’s ideal for soft substrates.” It also doesn’t require the printing material to be liquid.

Printing carbon nanotubes on paper to create chemical and biological sensors

They demonstrated their technique by printing a layer of carbon nanotubes on paper. They mixed the nanotubes into a plasma of helium ions, which they then blasted through a nozzle and onto paper. The plasma focuses the nanoparticles onto the paper surface, forming a consolidated layer without any need for additional heating.

The team printed two simple chemical and biological sensors. The presence of certain molecules can change the electrical resistance of the carbon nanotubes. By measuring this change, the device can identify and determine the concentration of the molecule. The researchers made a chemical sensor that detects ammonia gas and a biological sensor that detects dopamine, a molecule linked to disorders like Parkinson’s disease and epilepsy.

But these were just simple proofs-of-principle, Meyyappan said. “There’s a wide range of biosensing applications.” For example, you can make sensors that monitor health biomarkers like cholesterol, or food-borne pathogens like E. coli and Salmonella.

Because the method uses a simple nozzle, it’s versatile and can be easily scaled up. For example, a system could have many nozzles like a showerhead, allowing it to print on large areas. Or, the nozzle could act like a hose, free to spray nanomaterials on the surfaces of 3-D objects.

“It can do things inkjet printing cannot do,” Meyyappan said.

The method is ready for commercialization, Meyyappan said, and should be relatively inexpensive and straightforward to develop. Right now, the researchers are designing the technique to print other kinds of materials such as copper. They can then print materials used for batteries onto thin sheets of metal such as aluminum. The sheet can then be rolled into tiny batteries for cellphones or other devices.

The researchers describe their work in the American Institute of Physics journal Applied Physics Letters.


Abstract of Plasma jet printing for flexible substrates

Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and found to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter and ammonia respectively.