Whole-genome sequences of 17 of the world’s oldest living people published

Researchers unable to find genes significantly associated with extreme longevity
November 13, 2014

Misao Okawa, the world’s oldest living person, at age 116

Using 17 genomes, researchers were unable to find rare protein-altering variants significantly associated with extreme longevity, according to a study published November 12, 2014 in the open-access journal PLOS ONE by Hinco Gierman from Stanford University and colleagues.

Supercentenarians are the world’s oldest people, living beyond 110 years of age. Seventy-four are alive worldwide; 22 live in the U.S. The authors of this study performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity.

From this small sample size, the researchers were unable to find  any rare protein-altering variants that are significantly associated with extreme longevity compared to control genomes. However, they did find that one supercentenarian carries a variant associated with a heart condition, which had little or no effect on his/her health, as this person lived over 110 years.

Although the authors didn’t find significant association with extreme longevity, the authors have publicly published the genomes, making them available as a resource for future studies on the genetic basis of extreme longevity.

Abstract of Whole-Genome Sequencing of the World’s Oldest People

Supercentenarians (110 years or older) are the world’s oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies.