A smartphone ‘microscope’ that can detect a single virus, nanoparticles

September 19, 2013

Ozcan NanoCamera (credit: UCLA Henry Samueli School of Engineering and Applied Science)

UCLA engineers have created a 1/2-pound, portable smartphone attachment that can be used to perform sophisticated field testing to detect viruses and bacteria without the need for bulky and expensive microscopes and lab equipment.

“This cellphone-based imaging platform could be used for specific and sensitive detection of sub-wavelength [smaller than the wavelength of light] objects.

These include bacteria and viruses and therefore could enable the practice of nanotechnology and biomedical testing in field settings and even in remote and resource-limited environments,” said Aydogan Ozcan, a professor of electrical engineering and bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science.

“These results also constitute the first time that single nanoparticles and viruses have been detected using a cellphone-based, field-portable imaging system.”

Capturing clear images of objects as tiny as a single virus or a nanoparticle is difficult because the optical signal strength and contrast are very low for objects that are smaller than the wavelength of light.

In an ACS Nano paper, Ozcan details a fluorescent microscope device (fabricated by a 3-D printer) that contains a color filter, external lens, and laser diode. The diode illuminates fluid or solid samples at a steep angle of roughly 75 degrees. This oblique illumination avoids detection of scattered light that would otherwise interfere with the intended fluorescent image.

Using this device, which attaches directly to the camera module on a smartphone, Ozcan’s team was able to detect single human cytomegalovirus (HCMV) particles. HCMV is a common virus that can cause birth defects such as deafness and brain damage and can hasten the death of adults who have received organ implants, or who are infected with the HIV virus, or whose immune systems otherwise have been weakened. A single HCMV particle measures about 150–300 nanometers; a human hair is roughly 100,000 nanometers thick.

In a separate experiment, Ozcan’s team also detected nanoparticles — specially marked fluorescent beads made of polystyrene — as small as 90–100 nanometers.

To verify these results, researchers in Ozcan’s lab used other¬†imaging devices, including a scanning electron microscope and a photon-counting confocal microscope. These experiments confirmed the findings made using the new cellphone-based imaging device.

The device “holds significant promise for various point-of-care applications, such as viral load measurements or other biomedical tests conducted in remote or resource-limited environments,” the authors concluded in the ACS Nano paper.

Ozcan’s other recent inventions include a cellphone camera-enabled sensor for allergens in food products and a smart phone attachment that can conduct common kidney tests.

Funding support for the Ozcan Research Group comes from Nokia University Research Funding, the Army Research Office, the National Science Foundation, the National Institutes of Health, the Office of Naval Research and the Presidential Early Career Award for Scientists and Engineers.

For more information on the Ozcan Research Group, visit http://org.ee.ucla.edu/ Ozcan is a founder of the mobile microanalysis startup company Holomic LLC, which seeks to commercialize imaging and sensing technologies licensed from the UCLA Office of Intellectual Property and Industry Sponsored Research.