New 3D, origami-like structures for soft robotics

March 27, 2012

The Buckliball (credit: Jongmin Shim et al./PNAS)

Inspired by a toy, the ‘buckliball’ — a collapsible structure fabricated from a single piece of material — represents a new class of 3-D, origami-like structures that could have uses in creating soft robotics for use with people. for example.

Motivated by the desire to determine the simplest 3-D structure that could take advantage of mechanical instability to collapse reversibly, a group of engineers at MIT and Harvard University discovered a collapsible, spherical toy (the Hoberman Twist-O) that resembled the structures they’d been exploring, but with a complex layout of 26 solid moving elements and 48 rotating hinges.

The toy inspired the engineers to create the “buckliball,” a hollow, spherical object made of soft rubber containing no moving parts, but fashioned with 24 carefully spaced dimples. When the air is sucked out of a buckliball with a syringe, the thin ligaments forming columns between lateral dimples collapse.

This is the engineering equivalent of applying equal load on all beams in a structure simultaneously to induce buckling, a phenomenon first studied by mathematician Leonhard Euler in 1757.

When the buckliball’s thin ligaments buckle, the thicker ligaments forming rows between dimples undergo a series of movements the researchers refer to as a “cooperative buckling cascade.” Some of the thick ligaments rotate clockwise, others counterclockwise — but all move simultaneously and harmoniously, turning the original circular dimples into vertical and horizontal ellipses in alternating patterns before closing them entirely. As a result, the buckliball morphs into a rhombicuboctahedron about half the size (46 percent) of the original sphere.


The researchers named their new structure for its use of buckling and its resemblance to buckyballs, spherical all-carbon molecules whose name was inspired by the geodesic domes created by architect-inventor Buckminster Fuller. The buckliball is the first morphable structure to incorporate buckling as a desirable engineering design element. The buckling process induces folding in portions of the sphere — similar to the way paper folds in origami — so the researchers place their buckliball in a larger framework of buckling-induced origami they call “buckligami.”

HOBERMAN Twist-O (credit: Hoberman)

Because their collapse is fully reversible and can be achieved without moving parts, morphable structures such as the buckliball have the potential for widespread applications, from the micro- to macroscale. They could be used to create large buildings with collapsible roofs or walls, tiny drug-delivery capsules or soft movable joints requiring no mechanical pieces. They also have the potential to transform Transformers and other kinds of toys.

“In civil engineering, buckling is commonly associated with failure that must be avoided,” says Pedro Reis, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering and Mechanical Engineering at MIT. “For example, one typically wants to calculate the buckling criterion for columns and apply an additional safety factor, to ensure that a building stands.

“We are trying to change this paradigm by turning failure into functionality in soft mechanical structures. For us, the buckliball is the first such object, but there will be many others.” For instance, a robotic arm could be built from a single piece of material using a precisely engineered pattern of dimples at the intended hinging points that, when activated by a pressure signal, would bend.

“The buckliball not only opens avenues for the design of foldable structures over a wide range of length scales, but may also be used as a building block for creating new materials with unusual properties, capable of dramatic contraction in all directions,” says Katia Bertoldi, an assistant professor in applied mechanics at Harvard.

Soft mechanical structures

Reis’s research uses precision tabletop-scale lab tests and mathematical analysis to determine the basic physics underlying the mechanical behavior of materials. Bertoldi’s research group uses tools from continuum and computational mechanics to unravel the mechanics of soft structures. The two teams collaborated on the buckliball: Reis’ team performed the lab experiments with the help of digital fabrication techniques (such as 3-D printing) to create objects with precise geometry, and Bertoldi’s group used computation to further analyze the detailed mechanics of the process.

Chen, who was visiting Harvard at the time, determined that only five spherical geometric structures have the potential for reversible buckling-induced collapse. (The specific example of Fuller’s 12-hole rhombicuboctahedron that collapses into a cuboctahedron is one of these five.) Design parameters for buckliballs include dimple size, the thickness of the thin shell inside the dimple and the stiffness of the material used to fabricate the buckliball.

Nature, it appears, has already figured this out. Viruses inject their nucleic acids into a host through a reversible structural transformation in which 60 holes open or close based on changes in the acidity of the cell’s environment, a different mechanism that achieves a similar reversible collapse at the nanoscale.

“What’s exciting about this work is that it uses instabilities to basically amplify small or moderate pressures into dramatic motion,” says Carmel Majidi, an assistant professor of mechanical engineering at Carnegie Mellon University whose research in soft robotics focuses on stretchable skin-like materials containing sensors.

“One limitation of working with soft-material robotics is that they’re soft; they can’t produce the high pressures you get with heavy machines, so you’re left with machines that provide only fairly moderate pressures. This makes it difficult to achieve dramatic deformations. If you use a robotic skin as an assistive medical device on a human, it can monitor motion. But with advancements like the buckliball, the skin may even be able to actively change its shape and directly help with motor tasks.”

Ref.: Jongmin Shim et al., Buckling-induced encapsulation of structured elastic shells under pressure, Proceedings of the National Academy of Sciences, 2012 [DOI: 10.1073/pnas.1115674109]